ДЗ #25, BST СПб ВШЭ, 1 курс ПМИ, 15 апреля 2025

Содержание

Must have		2
Задача 25A .	Простейшее BST [0.2, 256]	2
Задача 25В.	Простейший полуявный ключ [0.2, 256]	3
Задача 25С.	Простейший неявный Ключ [0.2, 256]	4
Задачи здор	ового человека	5
Задача 25D.	Двоичное дерево поиска [0.1, 256]	5
Задача 25Е.	Дебаг-вывод дерева [0.2, 256]	6
Задача 25F.	К-ый максимум [0.1, 256]	7
Задача 25 G .	Неявный Ключ [0.5, 256]	8
Для искател	ей острых ощущений	9
Задача 25Н.	Range Minimum Query [0.5, 256]	9
Задача 251.	И снова сумма [0.6, 256]	10
Задача 25Ј.	Перестановки [1.5 sec, 256 mb]	11
Для мастеро	ов АІ	12
Задача 25К.	Эх, дороги[0.25, 256]	13

У вас не получается читать/выводить данные? Воспользуйтесь примерами (c++) (python).

Обратите внимание, входные данные лежат в **стандартном потоке ввода** (он же stdin), вывести ответ нужно в **стандартный поток вывода** (он же stdout).

Обратите внимание на GNU C++ компиляторы с суффиксом inc.

Подни можно пользоваться дополнительной библиотекой (optimization.h).

То есть, использовать быстрый ввод-вывод: пример про числа и строки.

И быструю аллокацию памяти (ускоряет vector-set-map-весь-STL): пример.

Для тех, кто хочет разобраться, как всё это работает.

Короткая версия быстрого ввода-вывода (тык) и короткая версия аллокатора (тык).

Must have

Задача 25A. Простейшее BST [0.2, 256]

В этой задаче вам нужно написать простейшее BST по явному ключу и отвечать им на запросы:

- + х добавить в дерево х (если х уже есть, ничего не делать).
- > х вернуть минимальный элемент больше х или 0, если таких нет.

Формат входных данных

В каждой строке содержится один запрос.

Все x целые от 1 до 10^9 , количество запросов от 1 до $300\,000$.

Гарантируется, что все х выбраны равномерным распределением.

Формат выходных данных

Для каждого запроса вида «> х» выведите в отдельной строке ответ.

Пример

stdin	stdout
+ 1	3
+ 3	3
+ 3	0
> 1	2
> 2	
> 3	
+ 2	
> 1	

Подсказка по решению

Случайные данные! Не нужно ничего специально балансировать.

Вам нужно в каждой вершине поддерживать размер поддерева.

В этой задаче вам нужно написать BST по **не**явному ключу.

ДЗ #25, BST СП6 ВШЭ, 1 курс ПМИ, 15 апреля 2025

Задача 25В. Простейший полуявный ключ [0.2, 256]

В этой задаче вам нужно написать BST по **явному** ключу и отвечать им на запросы:

- + х добавить в дерево х (если х уже есть, ничего не делать).
- \bullet ? k вернуть k-й по возрастанию элемент.

Формат входных данных

В каждой строке содержится один запрос.

Все x целые от 1 до 10^9 , количество запросов от 1 до $300\,000$.

Гарантируется, что все x выбраны равномерным распределением.

В запросах «? k», число k от 1 до количества элементов в дереве.

Формат выходных данных

Для каждого запроса вида «? k» выведите в отдельной строке ответ.

Пример

stdin	stdout
+ 1	1
+ 4	3
+ 3	4
+ 3	3
? 1	
? 2	
? 3	
+ 2	
? 3	

Подсказка по решению

Случайные данные! Не нужно ничего специально балансировать.

Вам нужно в каждой вершине поддерживать размер поддерева.

В этой задаче вам нужно написать BST по явному ключу.

Задача 25С. Простейший неявный Ключ [0.2, 256]

Изначально есть пустой массив. Вам нужно обрабатывать запросы вида і \mathbf{x} — добавить после i-го элемента x ($0 \le i \le n$), где n текущая длина массива. В конце после всех добавлений нужно вывести полученный массив.

Формат входных данных

 $q\ (1\leqslant q\leqslant 100\,000)$ строк, на каждой запрос «і х» — пара целых чисел $(0\leqslant i\leqslant n,\,1\leqslant x<100\,000).$

Формат выходных данных

Выведите q целых чисел — полученный массив.

Примеры

stdin	stdout
0 1	3 2 1
0 2	
0 3	
0 1	1 2 3
1 2	
2 3	
0 1	4 1 3 2
1 2	
1 3	
0 4	

Подсказка по решению

Случайные данные! Не нужно ничего специально балансировать.

Вам нужно в каждой вершине поддерживать размер поддерева.

В этой задаче вам нужно написать BST по **не**явному ключу.

Задачи здорового человека

Задача 25D. Двоичное дерево поиска [0.1, 256]

Реализуйте сбалансированное двоичное дерево поиска.

Или воспользуйтесь любой стандартной структурой из C++::STL.

Или попытайтесь запихать квадрат.

Формат входных данных

Входной файл содержит описание одной или нескольких операций с деревом. Операций не больше 10^5 . Все числа целые от -10^5 до 10^9 .

В каждой строке находится одна из следующих операций:

- ullet insert x добавить в дерево ключ x.
 - Если ключ x в дереве уже есть, то ничего делать не надо.
- ullet delete x- удалить из дерева ключ x.
 - Если ключа x в дереве нет, то ничего делать не надо.
- ullet exists x- если ключ x есть в дереве, «true», иначе «false»
- \bullet next x минимальный элемент в дереве, > x, или «none», если такого нет.
- prev x максимальный элемент в дереве, < x, или «none», если такого нет.

Формат выходных данных

Выведите последовательно результат выполнения всех операций exists, next, prev. Следуйте формату выходного файла из примера.

Примеры

stdin	stdout
insert 2	true
insert 5	false
insert 3	5
exists 2	3
exists 4	none
next 4	3
prev 4	
delete 5	
next 4	
prev 4	

Подсказка по решению

while (!seekEof()) { ... }

Заходят set, умный квадрат, сбалансированное bst.

Задача 25Е. Дебаг-вывод дерева [0.2, 256]

Дана последовательность добавлений в дерево поиска (bst). После каждого добавления выводите LxR обход дерева (вывести левое поддерева, вывести ключ, вывести правое поддерева).

Формат входных данных

Последовательность из n ($1 \le n \le 1000$) целых чисел от 0 до 10^6 , которые следуют добавить. Добавлять нужно именно в таком порядке. Гарантируется, что все числа **различны**.

Формат выходных данных

После каждого добавления выведите дерево в особом формате (см. примеры). Деревья для удобства чтения разделяйте строкой с одним дефисом. Обратите внимание, число пробелов перед x равно $2\cdot$ глубина вершины.

Примеры

stdin	stdout
1	x=1 size=1
5	-
9	x=1 size=2
3	x=5 size=1
	-
	x=1 size=3
	x=5 size=2
	x=9 size=1
	-
	x=1 size=4
	x=3 size=1
	x=5 size=3
	x=9 size=1

Подсказка по решению

Здесь эта задача не просто так. Такое действительно сильно помогает при дебаге. Выводите своё дерево после каждого запроса, любуйтесь тем, как оно растёт и развивается.

Задача 25 F. К-ый максимум [0.1, 256]

Напишите программу, реализующую структуру данных, позволяющую добавлять и удалять элементы, а также находить k-й максимум.

Формат входных данных

Первая строка входного файла содержит натуральное число n — количество команд $(n \leq 100\,000)$. Последующие n строк содержат по одной команде каждая. Команда записывается в виде двух чисел c_i и k_i — тип и аргумент команды соответственно $(|k_i| \leq 10^9)$. Поддерживаемые команды:

- +1 (или просто 1): Добавить элемент с ключом k_i .
- 0: Найти и вывести k_i -й максимум.
- -1: Удалить элемент с ключом k_i .

Гарантируется, что в процессе работы в структуре не требуется хранить элементы с равными ключами или удалять несуществующие элементы. Также гарантируется, что при запросе k_i -го максимума, он существует.

Формат выходных данных

Для каждой команды нулевого типа в выходной файл должна быть выведена строка, содержащая единственное число — k_i -й максимум.

Пример

stdin	stdout
11	7
+1 5	5
+1 3	3
+1 7	10
0 1	7
0 2	3
0 3	
-1 5	
+1 10	
0 1	
0 2	
0 3	

Подсказка по решению

Напишите AVL дерево. tree<int> запрещён.

ДЗ #25, BST СПб ВШЭ, 1 курс ПМИ, 15 апреля 2025

Задача 25G. Неявный Ключ [0.5, 256]

Научитесь быстро делать две операции с массивом: • add i x — добавить после *i*-го элемента x $(0 \le i \le n)$ • del i — удалить *i*-й элемент $(1 \le i \le n)$

Формат входных данных

На первой строке n_0 и m ($1 \le n_0, m \le 10^5$) — длина исходного массива и количество запросов. На второй строке n_0 целых чисел от 0 до $10^9 - 1$ — исходный массив. Далее m строк, содержащие запросы. Гарантируется, что запросы корректны: например, если просят удалить i-й элемент, он точно есть.

Формат выходных данных

Выведите конечное состояние массива. На первой строке количество элементов, на второй строке сам массив.

Примеры

stdin	stdout
3 4	3
1 2 3	9 2 8
del 3	
add 0 9	
add 3 8	
del 2	

Подсказка по решению

Напишите AVL дерево по неявному ключу.

Для искателей острых ощущений

Задача 25H. Range Minimum Query [0.5, 256]

Компания *Giggle* открывает свой новый офис в Судиславле, и вы приглашены на собеседование. Ваша задача — решить поставленную задачу.

Вам нужно создать структуру данных, которая представляет из себя массив целых чисел. Изначально массив пуст. Вам нужно поддерживать две операции:

- запрос: «? і j» возвращает минимальный элемент между i-ым и j-м, включительно;
- изменение: «+ і х» добавить элемент x после i-го элемента списка. Если i=0, то элемент добавляется в начало массива.

Конечно, эта структура должна быть достаточно хорошей.

Формат входных данных

Первая строка входного файла содержит единственное целое число n — число операций над массивом ($1 \le n \le 200\,000$). Следующие n строк описывают сами операции. Все операции добавления являются корректными. Все числа, хранящиеся в массиве, по модулю не превосходят 10^9 .

Формат выходных данных

Для каждой операции в отдельной строке выведите её результат.

Примеры

stdin	stdout
8	4
+ 0 5	3
+ 1 3	1
+ 1 4	
? 1 2	
+ 0 2	
? 2 4	
+ 4 1	
? 3 5	

Подсказка по решению

В вершине теперь нужно ещё и хранить то, что просят.

Задача 251. И снова сумма... [0.6, 256]

Реализуйте структуру данных, которая поддерживает множество S целых чисел, с котором разрешается производить следующие операции:

- add(i) добавить в множество S число i (если он там уже есть, то множество не меняется);
- sum(l,r) вывести сумму всех элементов x из S, которые удовлетворяют неравенству $l\leqslant x\leqslant r.$

Формат входных данных

Исходно множество S пусто. Первая строка входного файла содержит n — количество операций ($1 \le n \le 300\,000$). Следующие n строк содержат операции. Каждая операция имеет вид либо «+ i», либо «? l r». Операция «? l r» задает запрос sum(l,r).

Если операция «+ i» идет во входном файле в начале или после другой операции «+», то она задает операцию add(i). Если же она идет после запроса «?», и результат этого запроса был y, то выполняется операция $add((i+y) \bmod 10^9)$.

Во всех запросах и операциях добавления параметры лежат в интервале от 0 до 10^9 .

Формат выходных данных

Для каждого запроса выведите одно число — ответ на запрос.

Пример

stdin	stdout
6	3
+ 1	7
+ 3	
+ 3	
? 2 4	
+ 1	
? 2 4	

Подсказка по решению

На практике разобрали, как можно отвечать на такие запросы.

Задача 25 J. Перестановки [1.5 sec, 256 mb]

Рассмотрим циклический алфавит, состоящий из первых десяти букв английского алфавита. Циклическим он называется потому, что следующей буквой за 'a' является буква 'b', за 'b' — 'c' и так далее, и при этом следующей за буквой 'j' является буква 'a'.

Вам дана строка S, состоящая из букв этого циклического алфавита. Вы должны обрабатывать запросы трёх типов:

- Развернуть подстроку строки S с L-го по R-й символ включительно.
- В подстроке S с L-го по R-й символ заменить каждый символ на D-й следующий символ в циклическом алфавите.
- Для подстроки S с L-го по R-й символ найти количество различных перестановок символов этой подстроки по модулю $10^9 + 7$.

Формат входных данных

Первая строка входного файла содержит одно число N ($1 \le N \le 10^5$) — длину строки S. Во второй строке содержится сама строка S, состоящая из строчных букв английского алфавита от 'a' до 'j'. Третья строка содержит число M ($1 \le M \le 10^5$) — количество запросов. Затем идут M строк, содержащие описания запросов трех типов:

- -1 L R $(1 \le L \le R \le N)$ разворот подстроки.
- 0 L R D (1 $\leqslant L \leqslant R \leqslant N,\, 0 < D \leqslant N)$ замена символов в подстроке.
- 1 L R $(1\leqslant L\leqslant R\leqslant N)$ количество различных перестановок подстроки [L,R] строки S.

Формат выходных данных

На каждый запрос типа "1 L R" выведите ответ по модулю $10^9 + 7$ в отдельной строке.

Пример

stdin	stdout
6	180
abcabc	
3	
-1 1 6	
0 1 3 1	
1 1 6	

Замечание

D-м следующим символом за x называется символ, получающийся путем D-кратного взятия следующего за x символа в циклическом алфавите.

ДЗ #25, BST СП6 ВШЭ, 1 курс ПМИ, 15 апреля 2025

Для мастеров AI

Правила.

Это блок задач про промтинг. Пользоваться можно только бесплатными версиями ИИ. В шапке исходника указывать последовательность промтов, и сайты, куда они были отправлены. Если в процессе использования ИИ вы получили какие-то важные идеи для решения, это тоже часть решения. Если с помощью ИИ вы написали генератор тестов или стресс-тест, это тоже следует указывать. Задокументируйте, пожалуйста, проделанную работу в шапке отосланного решения. Если это нужно, вы можете писать часть кода сами.

Задача 25К. Эх, дороги... [0.25, 256]

В диком и суровом королевстве Гранития началась очередная транспортная кампания. Правда, дороги в этом королевстве давно стали притчей во языцех – то трещины, то овцы пасутся, то мост сам развалился. Власти решили взяться за дело серьёзно, но закон суров: из каждого поселения в каждый момент времени должно вести не более двух дорог. Все дороги – двусторонние, знаков нет, направления нет – кто куда хочет, туда и едет.

По плану, часть дорог будут строить, а часть закрывать на неопределённый срок по причине «внезапного обрушения» или «атак гномов».

В этой суматохе Лея, диспетчер караванной службы, должна моментально находить кратчайшие пути между поселениями, ведь каждый дополнительный город по пути – это риск нарваться на сборщиков налогов или заблудиться в тумане.

Ваша задача – помочь Лее отвечать на запросы о кратчайших маршрутах по мере изменений в дорожной сети.

Формат входных данных

В первой строке входного файла заданы числа n — количество городов, m — количество дорог в начале кампании и q — количество сообщений об изменении дорожной структуры и запросов ($1 \le n \le 100\,000$, $0 \le m \le 100\,000$, $0 \le q \le 200\,000$). Следующие m строк содержат по два целых числа каждая — пары городов, соединенных дорогами перед реформой. Следующие q строк содержат по три элемента, разделенных пробелами. «+ i j» означает строительство дороги от города i до города j, «- i j» означает закрытие дороги от города i до города j, «? i j» означает запрос об оптимальном пути между городами i и j.

Гарантируется, что в начале и после каждого изменения никакие два города не соединены более чем одной дорогой, и из каждого города выходит не более двух дорог. Никакой город не соединяется дорогой сам с собой.

Формат выходных данных

На каждый запрос вида «? $i\ j$ » выведите одно число — минимальное количество промежуточных городов на маршруте из города i в город j. Если проехать из i в j невозможно, выведите -1.

Пример

stdin	stdout
5 4 6	0
1 2	-1
2 3	1
1 3	2
4 5	
? 1 2	
? 1 5	
- 2 3	
? 2 3	
+ 2 4	
? 1 5	

Подсказка по решению

Нужно увидеть массив, то есть, деревья по неявному ключу.