SPb HSE, 1 курс, осень 2024/25 Практика по алгоритмам #13

Наконец-то не динамика 11 декабря

Собрано 10 декабря 2024 г. в 18:16

Содержание

1. Наконец-то не динамика	1
2. Разбор задач практики	3
3. Домашнее задание	5
3.1. Обязательная часть	5
3.2. Дополнительная часть	5

Наконец-то не динамика

1. Компактификация

Придумать способ хранения графа, чтобы памяти он занимал $\mathcal{O}(m)$, а dfs с ним работал за $\mathcal{O}(m+n\log m)$.

2. Как хранить?

Как хранить граф, чтобы уметь за $\mathcal{O}(1)$ отвечать на запросы четырёх типов: добавить ребро, удалить ребро, связны ли две данные вершины, перебрать всех соседей вершины v за $\mathcal{O}(deg_v)$.

3. Треугольник

Дан неорграф, посчитать количество треугольников (K_3) . Это не про dfs. (a) $\mathcal{O}(V^3)$, (b) $\mathcal{O}(VE)$, (c) оптимизации специально не рассказываем.

4. Достижимость множеств

Даны два множества вершин: A и B, за $\mathcal{O}(V+E)$ проверить, есть ли путь из какой-нибудь вершины $a \in A$ в какую-нибудь вершину $b \in B$.

5. Цикл через вершину

Дан орграф и вершина v. Найти простой цикл, проходящий через v за $\mathcal{O}(E)$.

6. Дерево

Дан граф. Проверить, является ли деревом. (a) $\mathcal{O}(E)$, (b) $\mathcal{O}(V)$.

7. А вы точно граф?

Даны две операции: $x \to (2x+1) \bmod N$ и $x \to (x^2+7) \bmod N$. x целое, $N=10^6+3$. Можно ли из числа 13 получить число 17? Если да, то как?

8. Ямки

В некоторых вершинах орграфа есть ямки.

Нужно дойти из a в b не более двух раз наступив в ямку. Как?

9. Ацикличная ориентация

Ориентировать неорграф так, чтобы он стал ацикличным, за $\mathcal{O}(V+E)$.

10. Транзитивное замыкание

Дан орграф, построить матрицу достижимости. $V \leqslant 20\,000,\, E \leqslant 200\,000.$

(a) DAG; (b) произвольный граф.

11. В мире перестановок

Даны перестановки p и q из 10 элементов. Можно ли в каком-то порядке применяя к тождественной перестановке перестановки p и q, получить перестановку z?

12. Строкапуты

Дан орграф, на рёбрах написаны буквы. Найдите путь в орграфе, на котором написана ровно данная строка s. За полином.

13. Разбиение на дружелюбные доли

У каждой вершины не более 3 врагов.

Разбить на 2 доли так, чтобы с вершиной в долю попало не более 1 врага. $\mathcal{O}(V+E)$.

14. Снятие пометок и циклы

Вася хочет перебрать все-все-все циклы в неорграфе. Для этого он придумал «запустить обычный dfs для поиска цикла и снимать при выходе из dfs пометки». За сколько в худшем работает такой алгоритм? Какие у него проблемы? Как всё-таки посчитать число различных пиклов?

15. (*) Здоровенная зебра

Дана матрица из чисел. Выберите наибольшее связное по стороне множество клеток, чтобы было использовано не более двух различных чисел. $\mathcal{O}(wh)$.

16. (*) Максимальное число различных циклов

Есть неорграф, нужно выбрать максимальное число простых циклов так, чтобы каждый следующий содержал хотя бы одно новое ребро (ни разу не использованное в предыдущих циклах). $\mathcal{O}(V+E)$.

Разбор задач практики

1. Компактификация

Сортированный список рёбер (a, b).

Перебор рёбер из a: бинпоиском найти первое a и за степень a перебрать рёбра.

Время $dfs - \mathcal{O}(n \log m + m)$. Памяти нужно 8m для орграфа 16m для неорграфа.

2. Как хранить?

Хранить для каждой вершине unordered_set соседей.

3. Треугольник

 $\mathcal{O}(V^3)$ — перебираем тройку вершин и матрицей смежности проверяем.

 $\mathcal{O}(VE)$ — перебираем вершину и ребро, и матрицей смежности проверяем.

4. Достижимость множеств

dfs из всех вершин A, проверить, что посещена хотя бы одна из B.

5. Цикл через вершину

dfs из вершины v «в себя». Можно модифицировать dfs, чтобы он умел в v зайти второй раз. Можно создать v' копию v и dfs: $v \to v'$.

6. Дерево

Проверить m=n-1, проверить связность. Проверка связности будет работать за $\mathcal{O}(n)$, т.к. мы уже проверили, что рёбер n-1.

7. А вы точно граф?

В условии описан граф из N вершин и 2N рёбер. dfs по нему.

8. Ямки

Вершина нового графа $\langle v, k \rangle$ — вершина старого и сколько раз уже были в ямке.

9. Ацикличная ориентация

Ориентируем ребра от меньшей вершины к большей.

Способ #2. Запустим dfs, ориентируем все ребра вниз, то есть ребра дерева и обратные из предка в потомка. В обоих случаях цикла нет, ибо на любом пути либо строго растёт номер вершины, либо глубина в дереве dfs.

10. Транзитивное замыкание

Сконденсируем граф. Из каждой вершины достижима её ксс и ещё какие-то. Какие?

Динамика по конденсации bitset dp[v] — множество вершин, достижимых из v. dp[v] — это OR bitset'ов детей v. Динамика ленивая (dfs-о-динамика).

11. В мире перестановок

Видим граф из 10! < 4000000 вершин, на нём dfs.

12. Строкапуты

Динамика dp[v,i] – можно ли оказаться в вершине v, выписав первые i символов строки s. Начальное состояние $\forall v dp[v,0] = true$. Конец пути – любая v: dp[v,|s|] = true.

13. Разбиение на дружелюбные доли

Разобьем как-нибудь. Метод локальных оптимизаций: если у какой-то вершины в её доле 2 врага, перекинем её в другую долю.

Каждый раз уменьшается суммарное число рёбер-врагов внутри долей, поэтому надо $\mathcal{O}(E)$ шагов. Чтобы быстро находить плохие вершины, сделаем это dfs-ом.

```
void dfs(int v):
    if (bad(v)):
        color[v] ^= 1;
        for (int x : g[v]) dfs(x);
for (int v = 0; v < n; v++)
    dfs(v);</pre>
```

Заметим, что тут нет пометок посещенных вершин, но рекурсивные вызовы возникают только после переркидывания вершины, поэтому время $\mathcal{O}(V+E)$.

14. Снятие пометок и циклы

Работает за n! на полном графе. Важно запомнить, что dfs быстро ищёт «один какой-то цикл», а вот «найти все циклы» – это уже экспонента.

Проблема: каждый цикл найдётся несколько раз (разный предпериод, 2 направления прохождения, вход в разные вершины).

Возможное решение проблемы = после нахождения цикла переберём циклический сдвиг и направление, выберем цикл с минимальным vector<int>, сложим всё это добро в set.

15. (*) Здоровенная зебра

Сожмём компоненты одного цвета. В новом графе у каждой вершины есть вес (размер компоненты) и цвет (число из матрицы). Тип ребра в сжатом графе = типы его концов.

Для каждого типа возьмём все рёбра такого типа и запустим dfs по ним.

Чтобы суммарное время работы было линейным dfs по должен работать ровно за $\mathcal{O}(E)$ – обнулять пометки за $\mathcal{O}(1)$ и ходить только по вершинам, из которых \exists рёбра.

16. (*) Максимально число различных циклов

Рассмотрим любое остовное дерева dfs. Его рёбра нужны, чтобы хотя бы посетить вершины. А все не древесные рёбра образуют циклы, всего m - (n-1) циклов.

Кстати, полученные циклы образуют базис в «пространстве циклов».

Домашнее задание

3.1. Обязательная часть

1. (2) Путь через ад

Дан орграф. В некоторых вершинах живут монстры. Монстры бывают трёх типов. Проходя через некоторые вершины, можно получить иммунитет к некоторым типам монстров (три разных иммунитета). В каждый момент времени каждый из трёх иммунитетов или есть, или нет, копить их нельзя. Иммунитет при встрече с монстром спасает от гибели ровно один раз и пропадает. Можно ли из вершины a дойти до вершины b и не умереть? $(V, E \leq 10^5)$.

Подсказка: важно увидеть правильный граф.

2. (2) Минимизация максимального ребра на цикле

Дан неорграф с целыми положительными весами на рёбрах. Найти в неорграфе такой цикл, что максимальный вес ребра этого цикла минимален. $\mathcal{O}((V+E)\log E)$.

Решить, используя только известное нам. Подсказка: откуда берутся логи?

3. (2) Ещё один вариант разбиения на две доли

Разбить множество вершин неорграфа на две доли так, чтобы у каждой вершины был сосед в другой доле. $\mathcal{O}(V+E)$.

4. **(3)** Ромбики

Найти в неорграфе «ромбик с диагональю»: 4 вершины a,b,c,d и 5 рёбер ab,bc,cd,da,ac. Оценка: (1) $\mathcal{O}(V^3)$, (1) $\mathcal{O}(VE)$, (1) $\mathcal{O}(\frac{VE}{w})$, (+1) $\mathcal{O}(E^{3/2})$.

5. (3) Покраска в 3 цвета

Дан изначально пустой неорграф. В него добавляются рёбра и вершины. При этом поддерживается инвариант, что степени всех вершин не более 5. Поддерживать покраску вершин в 3 цвета так, чтобы у каждой было не более одного соседа того же цвета. При добавлении новых ребра/вершины обновлять покраску за амортизированное $\mathcal{O}(1)$.

3.2. Дополнительная часть

1. (3) Минимизация максимальной исходящей степени

Дан неорграф. Ориентировать его так, что максимальная исходящая степень была минимальна. $\mathcal{O}(E^2)$. Можно еще на полилог.

2. (3) Существование пути

Напишите детерминированное решение, которое имеет доступ к оракулу g(i,j) — есть ли ребро между i и j, и должно, используя полилогарифм от n памяти проверить наличие пути из a в b в графе из n вершин.