SPb HSE, 1 курс, осень 2024/25 Практика по алгоритмам #6

Сортировки, точки-экстремумы 9 октября

Собрано 9 октября 2024 г. в 11:12

Содержание

1. Сортировки и поиск	1
2. Задачи про поиск точки	1
3. Дополнительные задачи	2
4. Разбор задач практики 4.1. Задачи про поиск точки	
5. Домашнее задание 5.1. Обязательная часть	 8 8

Сортировки и поиск

Пирожки

Робот Иван Семеныч пробует пирожки. Содержимое пирожков делится на три типа. Всего пирожков n. Каждый пирожок можно попробовать не более одного раза. Пирожки можно менять местами. Память у робота маленькая, $\mathcal{O}(\log n)$ бит.

Помогите Ивану Семенычу отсортировать пирожки по типу: сначала первый, потом второй, потом третий. Сортировка должна работать за линейное время.

2. Оптимизация скалярного произведения

Даны два массива a и b одинаковой длины. Найти такую перестановку p, что

a)
$$\sum_{i=1}^{n} a_{p_i} b_i \to \max;$$

b)
$$\sum_{i=1}^{n} a_{p_i} b_i \to \min$$
.

c) Выбрать массив p из k различных чисел от 1 до n так, чтобы $\sum_{i=1}^k a_{p_i} b_{p_i} \to \max$.

3. Умный бинпоиск

Пусть мы ищем в сортированном массиве длины n такое k: a[k] = x, тогда бинпоиск работает за $\mathcal{O}(\log n)$, а линейный поиск за $\mathcal{O}(k)$, что может быть меньше. Научите бинпоиск находить k за $\mathcal{O}(\log k)$!

4. Корни многочлена

- а) Найти корень многочлена нечетной степени за $\mathcal{O}(n \log M)$. n степень многочлена.
- b) Зная все корни производной, найти все вещественные корни многочлена за $\mathcal{O}(n^2 \log M)$.
- с) Найти все вещественные корни многочлена за $\mathcal{O}(n^3 \log M)$.

5. Нижняя оценка на два бинпоиска

Докажите, что нельзя сделать и lower_bound, и upper_bound одновременно, используя в худшем случае меньше чем $2\log_2 n + \mathcal{O}(1)$ сравнений.

Задачи про поиск точки

Каждую из предложенных задач можно решить за время $\mathcal{O}(n)$, решения за линию от n на полилогарифм тоже приветствуются. Для разминки продифференцируйте $x^7 + 4x^3$.

1. Точки на прямой

Даны n точек на прямой x_i . Найти точку x^* :

a)
$$\sum_{i} (x_i - x^*)^2 \to \min$$

b)
$$\sum_{i} |x_i - x^*| \to \min$$

c)
$$\max_{i} |x_i - x^*| \to \min$$

d)
$$\max_{i} (x_i - x^*)^2 \to \min_{i}$$

2. Точки на плоскости

Даны n точек на плоскости (x_i, y_i) . Найти точку (x^*, y^*) :

- a) $\max_{i} \left[\max(|x_i x^*|, |y_i y^*|) \right] \to \min$
- b) Найдите за $\mathcal{O}(n)$ площадь пересечения n прямоугольников со сторонами параллельными осям координат. Поймите, как выглядит на плоскости множество точек $\{\max(|x|,|y|) \le d\}$. Как оно выглядит после поворота на 45? Опишите новую фигуру формулой.

Решите бинпоиском по ответу $\max_{i} \left[|x_i - x^*| + |y_i - y^*| \right] \to \min$. Решите без бинпоиска.

c)
$$\sum_{i} \left[(x_i - x^*)^2 + (y_i - y^*)^2 \right] \to \min$$

d)
$$\sum_{i} [|x_i - x^*| + |y_i - y^*|] \to \min$$

e)
$$\sum_{i} \left[\max(|x_i - x^*|, |y_i - y^*|) \right] \to \min$$

3. Точки с весами

На прямой расположено n точек p_1, p_2, \ldots, p_n . Каждая точка имеет вес $w_i \geqslant 0$. Требуется найти точку $q \colon \sum_i \left[w_i \cdot |p_i - q| \right] \to \min$.

(*) Решить за $\mathcal{O}(n)$.

Дополнительные задачи

1. Еще ускорение SiftDown

Модифицируйте операцию SiftDown для бинарной кучи так, чтобы она по-прежнему работала за $\mathcal{O}(\log n)$, но при этом делала лишь $\log_2 n + \mathcal{O}(\log^* n)$ сравнений.

2. Convex hull

Доказать, что, если мы умеем строить выпуклую оболочку n точек на плоскости за время f(n), мы умеем сортировать n целых чисел за f(n).

- $(\sum_{i=1}^k a_{p_i})(\sum_{i=1}^k b_{p_i}) \to \max (a_i, b_i > 0).$ 3. Hard K-best max
- $(\sum_{i=1}^k a_{p_i})(\sum_{i=1}^k b_{p_i}) \to \min (a_i, b_i > 0).$ 4. Hard K-best min

5. Точки на плоскости

f)
$$\max_{i} \left[(x_i - x^*)^2 + (y_i - y^*)^2 \right] \to \min$$

g) $\sum_{i} \sqrt{(x_i - x^*)^2 + (y_i - y^*)^2} \to \min$

g)
$$\sum_{i} \sqrt{(x_i - x^*)^2 + (y_i - y^*)^2} \to \min$$

6. Оптимизация $\min \times \sum$

Найти отрезок массива, на котором $\min \times \sum$ максимально. $\mathcal{O}(n)$.

- а) Все числа положительны.
- b) Числа целые, 64-битные. Решение с использованием минимума на отрезке за $\mathcal{O}(1)$.
- с) Числа целые, 64-битные. Простое решение со стеком.

7. Коровы и стойла #2

То же самое, только теперь стойла стоят на окружности. Решение за $\mathcal{O}(n \log \text{MAX})$.

Разбор задач практики

Пирожки

Краткое условие: отсортировать массив одним проходом, используя $\mathcal{O}(1)$ доп.памяти. Сортировка для k типов пирожков за $\mathcal{O}(nk)$ с $k \log_2 n$ бит доп.памяти на примере k=3:

Изначально $i_1 = i_2 = i_3 = 0$.

Поддерживем инвариант: $[0,i_1)$ – единицы, $[i_1,i_2)$ – двойки, $[i_2,i_3)$ – тройки.

Двигаем i_3 , **swap**-ами ставим $a[i_3]$ в нужное место.

```
for (int i1 = 0, i2 = 0, i3 = 0; i3 < n; ++i3)
if (a[i3] != 3) // a[0,i1)=1 a[i1,i2)=2 a[i2,i3)=3
swap(a[i3], a[i2]);
if (a[i2] != 2)
swap(a[i2], a[i1++]);
++i2;</pre>
```

2. Оптимизация скалярного произведения

ab) **Идея:** хотим чтобы максимальный a_i стоял рядом с максимальным b_i .

Сортируем пары $A_i = (a_i, i)$ по возрастанию.

Если хотим max, сортируем пары $B_i = (b_i, j)$ по возрастанию, иначе по убыванию.

Соответствие: $A_i \leftrightarrow B_i$. Ответ: $p[A_i.second] = B_i.second$.

Доказательство (транс-неравенство): пробуем менять местами два элемента a, $a_1b_1+a_2b_2\leqslant a_2b_1+a_1b_2\Leftrightarrow a_1(b_1-b_2)+a_2(b_2-b_1)\leqslant 0\Leftrightarrow (a_1-a_2)(b_1-b_2)\leqslant 0\Leftrightarrow (a_1>a_2\wedge b_1\leqslant b_2).$ Вывод: если b отсортирован и a не отсортирован, можно поменять местами два элемента a, ответ не ухудшится, число инверсий уменьшится.

c) $\sum_{i=1}^k a_{p_i} b_{p_i} \to \max$.

Нужна тах сумма из k элементов массива $c_i = a_i b_i$, берем k максимальных c_i . Это можно сделать за $\mathcal{O}(n \log n)$ сортировкой, можно за $\mathcal{O}(n+k \log n)$ построением кучи и извлечением k максимумов,

можно за $\mathcal{O}(n)$ поиском (n-k)-й статистики и выбором всех не меньших ее элементов.

3. Умный бинпоиск

```
R = 1; while (a[R] < x) R *= 2; за \mathcal{O}(\log k) даст нам R < 2k. Затем фигачим бинпоиск на [0, R] за \mathcal{O}(\log k).
```

4. Корни многочлена

а) Пусть для определенности старший коэффициент многочлена будет положительный.

```
Тогда f(x) \to +\infty при x \to +\infty, f(x) \to -\infty при x \to -\infty.
```

Инвариант бинпоиска: $f(l) < 0, f(r) \ge 0 \Rightarrow B[l, r]$ всегда есть корень.

На каждом шаге бинпоиска вычисляем f(m) за $\Theta(n)$, итого $\mathcal{O}(n \log M)$.

Как найти начальные значения l и r?

```
r = 1; l = -1; while (f(r) < 0) r *= 2; while (f(l) >= 0) l *= 2;
```

b) Между соседними корнями производной функция монотонна, т.к. производная не меняет знак \Rightarrow там не больше одного корня и его можно найти бинпоиском. Еще могут быть корни справа от тах корня производной и слева от тах корня (+2 отрезка на рассмотрение). Степень производной многочлена равна $n-1 \Rightarrow$ корней у неё не больше n-1.

Время работы: $\mathcal{O}(n)$ отрезков, на каждом бинпоиск за $\mathcal{O}(n \log M)$, итого $\mathcal{O}(n^2 \log M)$.

с) Если n=1, найдём корень за $\mathcal{O}(1)$ (линейное уравнение), иначе посчитаем производную, рекурсивным вызовом найдём её корни, воспользуемся решением (b).

Как считать производную? $P(x) = a_n x^n + \dots + a_1 x + a_0 \Rightarrow P'(x) = n a_n x^{n-1} + \dots + a_1$. Время работы: $T(n) = T(n-1) + n^2 \log M = \mathcal{O}(n^3 \log M)$.

Замечение для самых любопытных.

На практике при наличии кратных корней этот метод не работает из-за погрешности. Пример: $P(x)=(x-1)^{10}\Rightarrow P(1.01)=10^{-20}$, что не отличимо от нуля даже в long double. Для борьбы с кратными корнями задачу делят на две – найти кратные корни, как корни $G(x)=\gcd(P(x),P'(x))$, найти оставшиеся, как корни P(x)/G(x).

4.1. Задачи про поиск точки

1. Точки на прямой

a) $\sum_{i} (x_i - x^*)^2 \to \min$.

Минимум в нуле производной. $\sum 2(x_i - x^*) = 0 \Rightarrow x^* = \frac{\sum x_i}{n}$.

b) $\sum_i |x_i - x^*| \to \min$.

Идея: пусть ответ в точке x, подвигаем чуть-чуть x, улучшился ли ответ?

Рассмотрим какой-нибудь x. Пусть слева от него l точек, справа r.

Если сдвинем x на ε вправо, не перескочив ни через одну точку, то $\sum_i |x_i - x|$ изменится на $(l-r)\varepsilon$. Если l < r, движение вправо улучшает. Если l > r, движение влево улучшает.

Итого: брать нужно медиану. $\mathcal{O}(n)$.

Если n нечётно, медиана = $x_{\lfloor n/2 \rfloor}$ в отсортированном порядке.

Если n чётно, медиан две, можно взять любую точку между ними.

c) $\max_i |x_i - x^*| \to \min$.

Максимум либо в самой левой, либо в самой правой точке, поэтому $x^* = \frac{x_1 + x_n}{2}$.

d) $\max_i (x_i - x^*)^2 \to \min$.

Задача эквивалентна максимизации $|x_i - x^*| \Rightarrow x^* = \frac{x_1 + x_n}{2}$.

2. Точки на плоскости

- а) $\max_i \left[\max(|x_i x^*|, |y_i y^*|) \right] \to \min.$ $\max_i \left[\max(|x_i x^*|, |y_i y^*|) \right] = \max \left[\max_i |x_i x^*|, \max_i |y_i y^*| \right]$ \Rightarrow координаты x^* и y^* не зависят друг от друга $\Rightarrow x^* = \frac{x_{\min} + x_{\max}}{2}, y^* = \frac{y_{\min} + y_{\max}}{2}.$
- b) $\max_{i} [|x_i x^*| + |y_i y^*|] \to \min.$

Предварительные рассуждения.

Бинпоиск по ответу. Внутри бинпоиска нужно уметь проверять, есть ли точка на расстоянии $\leq m$ от каждой (x_i, y_i) . Для каждой (x_i, y_i) рассмотрим множество точек, находящихся на расстоянии $\leq m$ по метрике $|x-x_i|+|y-y_i|$.

Пересекаем эти множества, проверяем, пусто ли пересечение.

Каждое такое множество – квадрат, повернутый на 45° к осям координат.

Пересечение множеств – прямоугольник, повернутый на 45°.

Из разминки вы умеете пересекать квадраты со сторонами, параллельными осям координат. Повернём плоскость на 45°, найдём ответ, повернём его обратно.

Прямое преобразование: $(z_i, t_i) = (x_i - y_i, y_i + x_i)$. Обратное преобразование: $(x^*, y^*) = (\frac{z^* + t^*}{2}, \frac{t^* - z^*}{2})$.

Откуда прямая формула: поворот точки (x,y) вокруг (0,0) на 90° – это (-y,x).

Поворот на 45° – биссектриса между (x,y) и (-y,x), биссектриса получается сложением векторов. Преобразование $(x_i, y_i) \to (x_i - y_i, y_i + x_i)$ – это не только поворот, но и растяжением плоскости в $\sqrt{2}$ раз. Растяжение не влияет на максимизацию.

Заметим, что после поворота и бинпоиск не нужен, получившиеся квадраты – это множества, находящиеся на фиксированном расстоянии от точки по метрике $\max(|z|,|t|)$.

Формально: $\max(|x-y|, |x+y|) = |x| + |y|$. То есть, мы свелись к предыдущей задаче:

$$\max_{i} (|x^* - x_i| + |y^* - y_i|) = \max_{i} (\max(|z^* - z_i|, |t^* - t_i|))$$

Решение коротко.

Обозначим $z_i = x_i + y_i, t_i = x_i - y_i.$

Обозначим $z^* = x^* + y^*, t^* = x^* - y^*$.

Обозначим $dz_i = z_i - z^*$, $dt_i = t_i - t^*$, $dx_i = x_i - x^*$, $dy_i = y_i - y^*$.

Заметим, что $\max(|dz_i|, |dt_i|) = \max(|dx_i + dy_i|, |dx_i - dy_i|) = |dx_i| + |dy_i|.$

Тогда $\max_i \left\lceil |dx_i| + |dy_i| \right\rceil = \max_i \left\lceil \max(|dz_i|, |dt_i|) \right\rceil.$

Взяли решение (a) для для точек (z_i,t_i) , получили $z^*=\frac{z_{\min}+z_{\max}}{2}, t^*=\frac{t_{\min}+t_{\max}}{2}$. Перешли от (z,t) к (x,y): $x^*=\frac{z^*+t^*}{2}, y^*=\frac{z^*-t^*}{2}$.

Главная идея, запомните: $\max(|dz_i|, |dt_i|) = |dx_i| + |dy_i|$, оно же «поворот на 45°».

Алгоритм за $\mathcal{O}(n)$.

- 1. $z_i = x_i + y_i, t_i = x_i y_i$ 2. $z^* = \frac{z_{\min} + z_{\max}}{2}, t^* = \frac{t_{\min} + t_{\max}}{2}$ 3. $x^* = \frac{z^* + t^*}{2}, y^* = \frac{z^* t^*}{2}$
- c) $\sum_{i} \left[(x_i x^*)^2 + (y_i y^*)^2 \right] \to \min.$

Сумма распадается на независимые суммы по каждой координате. $x^* = \frac{\sum x_i}{n}, y^* = \frac{\sum y_i}{n}$.

d) $\sum_{i} ||x_i - x^*| + |y_i - y^*|| \to \min.$

Независимые суммы по каждой координате. $x^* = x_{\text{median}}, y^* = y_{\text{median}}$.

- e) $\sum_{i} \left[\max(|x_i x^*|, |y_i y^*|) \right] \to \min.$
 - 1. Повернуть плоскость на 45°, получить задачу (d).
 - 2. Взять решение задачи (d), повернуть полученный ответ обратно.

3. Точки с весами

Идея: пусть ответ в точке x, подвигаем чуть-чуть x, улучшился ли ответ?

Рассмотрим какой-нибудь x, пусть суммарный вес точек слева от x равен w_l , справа w_r . Если сдвинем x на ε вправо, не перескочив ни через одну точку, то $\sum w_i |p_i - x|$ изменится на $(w_l - w_r)\varepsilon$. Если $w_l < w_r$, движение вправо улучшает. Если $w_l > w_r$, движение влево улучшает.

⇒ нам подойдет самая левая точка такая, что сумма весов слева до неё (включая её саму) достигает половины от суммарного веса. Так называемая взвешенная медиана.

Найти точку можно за $\mathcal{O}(n)$ тем же алгоритмом (одноветочный Quick Sort), который ищет медиану. Внутри Qucik Sort теперь нужно смотреть не на число элементов, которые меньше разбивающего, а на их суммарный вес.

4.2. Дополнительные задачи

1. Еще ускорение SiftDown

 $\log_2 n + \mathcal{O}(\log^* n)$ сравнений.

Пусть мин куча. Спустимся на $\log n - \log \log n$ вниз, попали в i, сравним h[i] с нашим x.

Если h[i] > x, то бинпоиском за $\log \log n$ побеждаем.

Если $h[i] \leq x$, то мы за $(\log n - \log \log n) + 1$ сравнений свели задачу «спуститься вниз на $\log n$ » к такой же, только спускаться осталось лишь на $\log \log n$, продолжим спуск.

 $(\log n - \log \log n + 1) + (\log \log n - \log \log \log n + 1) + \dots = \log n + \mathcal{O}(\log^*).$

2. Convex hull

Пусть нужно отсортировать числа x_i . Возьмём точки (x_i, x_i^2) .

Алгоритм построения выпуклой оболочки отсортирует все точки.

3. Hard K-best max: $(\sum_{i=1}^k a_{p_i})(\sum_{i=1}^k b_{p_i}) \to \max$.

Пусть $a_i + b_i = C$ (константа). Тогда какие бы k пар мы не выбрали, будет верно $\sum a_i + \sum b_i = kC$. Произведение максимально, если $\sum a_i = \frac{kC}{2}$. Т.е. если существуют такие k a-шек, мы должны их найти. Это задача о рюкзаке.

4. Hard K-best min: $(\sum_{i=1}^k a_{p_i})(\sum_{i=1}^k b_{p_i}) \to \min$

5. Точки на плоскости

f) $\max_{i} \left[(x_i - x^*)^2 + (y_i - y^*)^2 \right] \to \min.$

Два вложенных тернарных поиска, по y и по x. $\mathcal{O}(n\log^2 M)$.

Существует простой вероятностный алгоритм за $\mathcal{O}(n)$ в среднем.

А есть даже детерминированный за $\mathcal{O}(n)$.

g) $\sum_{i} \sqrt{(x_i - x^*)^2 + (y_i - y^*)^2} \to \min$.

Два вложенных тернарных поиска, по y и по x. $\mathcal{O}(n\log^2 M)$.

6. **Оптимизация** min × ∑

Для каждого i ищем отрезок $[L_i, R_i]$ с максимальной суммой, в котором $a_i = \min$.

Поиск L_i и R_i – независимые задачи, решаются одинаково. Разберем поиск L_i .

Найдем за $\mathcal{O}(n)$ для каждого элемента ближайший слева меньший его l_i .

- а) Если все числа положительны, то $L_i = l_i + 1$.
- b) $L_i = \max_{j \in (l_i, i]} (a_i \cdot (\operatorname{pref}_{i+1} \operatorname{pref}_j))$. То есть, если $a_i > 0$, min pref_j , иначе $\operatorname{max} \operatorname{pref}_j$.
- с) \exists структура данных, дающая min/max на полуинтервале $(l_i, i]$ за $\mathcal{O}(1)$. Можно проще: давайте по ходу вычисления l_i помнить min/max между соседними элементами в стеке. Тогда значение для $(l_i, i]$ будет на стеке, когда мы положим i.

7. Коровы и стойла #2

Тот же бинпоиск, что и для обычных коров. Внутри бинпоиска нужно за $\mathcal{O}(n)$ проверять, что можно выбрать k точек на окружности на расстоянии $\geqslant m$.

- 1. Отсортируем точки на окружности. Удвоим массив: x[i+n] = x[i] + L, где L – длина окружности.
- 2. За $\mathcal{O}(n)$ двумя указателями $\forall i$ найдем $next[i] = \min j : x[j] \geqslant x[i] + m$.
- 3. Теперь для любой точки можно за k-1 прыжок $i \to next[i]$ проверить, можно ли взять её в ответ. Проверим точку x[0].
- 4. а) Не зациклились за k-1 прыжок \Rightarrow ок, расставили.
 - b) Зациклились за < k-1 прыжков \Rightarrow ни с какой начать нельзя.
 - с) Зациклились ровно за k-1 прыжок \Rightarrow окружность разбилась на k-1 часть, в одной из них $\leqslant \frac{2n}{k-1}$ точек. Проверим каждую из них за $\mathcal{O}(k)$.

Итого время работы $\mathcal{O}(n \log M)$.

Домашнее задание

5.1. Обязательная часть

1. (3) Ближайшие к медиане

Дан массив A[1..n] из n различных чисел. Массив не обязательно отсортирован. Требуется найти k ближайших к медиане элементов за линейное время. Решить для двух метрик.

а) (1) По позиции в отсортированном массиве.

$$d(x, median) = |pos(x) - pos(median)|,$$

где pos(x) — позиция элемента x в отсортированном массиве.

b) **(2)** По значению.

$$d(x, median) = |x - median|.$$

2. (4) Поиск точки

а) (1) Даны n точек на прямой x_i с весами $w_i \geqslant 0$. Найти точку x^* :

$$\sum_{i} \left[w_i (x_i - x^*)^2 \right] \to \min$$

b) (1) Даны n точек на плоскости (x_i, y_i) с весами $w_i \ge 0$. Найти точку (x^*, y^*) :

$$\sum_{i} \left[|x_i - x^*| + w_i |y_i - y^*| \right] \to \min$$

с) (2) Даны n точек на плоскости (x_i, y_i) с весами $w_i \geqslant 0$. Найти точку (x^*, y^*) :

$$\max_{i} \left[w_i(|x_i - x^*| + |y_i - y^*|) \right] \to \min.$$

Дополнительный (+1) балл можно заработать, решив эту задачу $\mathcal{O}(\mathtt{sort}+n)$.

3. **(3)** Поиск двух точек

На прямой расположено n точек p_1, p_2, \ldots, p_n . Каждая точка имеет вес $w_i \geqslant 0$.

Выбрать две точки
$$q_1, q_2 \colon \sum_i \left[w_i \cdot \min(|p_i - q_1|, |p_i - q_2|) \right] \to \min.$$

Решение за $\mathcal{O}(n^2)$ даст один балл из трёх.

 Hint : перебирать можно не только координаты q_i .

4. (3) Поиск многих статистик

Дан массив из n чисел и m чисел $k_1, k_2, \dots k_m$, нужно за $\mathcal{O}(n \log m + m)$ для каждого i найти k_i -ую порядковую статистику.

5. (2) Поиск статистики

Оцените сложность детерминированного алгоритма поиска k статистики, если в нем разбивать на группы не по 5 элементов, а по:

- a) **(1)** 7
- b) (1) 3

5.2. Дополнительная часть

1. (2) Сортировка вещественных чисел

Даны n вещественных чисел из [0,1] в произвольном порядке. Представим, что они уже отсортированы и посмотрим на разности соседних чисел. Нужно найти максимальную такую разность за $\mathcal{O}(n)$.

2. (3) Поиск центра

Даны n точек на плоскости (x_i, y_i) с весами $w_i \geqslant 0$. Найти точку (x^*, y^*) :

$$\max_{i} \left[w_i ((x_i - x^*)^2 + (y_i - y^*)^2) \right] \to \min.$$

Будут оценены решения за линию на полилогарифм.

3. (3) Поиск трех точек

На прямой расположено n точек p_1, p_2, \ldots, p_n . Каждая точка имеет вес $w_i \geqslant 0$.

Выбрать три точки
$$q_1,q_2,q_3\colon \sum\limits_i \Bigl[w_i\cdot \min(|p_i-q_1|,|p_i-q_2|,|p_i-q_3|)\Bigr] o \min.$$

Требуется решение за линию на полилогарифм.

4. (2) Амортизированная вставка в кучу

Придумайте, как модифицировать обычную бинарную кучу так, чтобы Add работал за амортизированное $\mathcal{O}(\log\log n)$.

5. (5) Нижняя оценка на построение кучи

Внимание: эту задачу можно сдавать только до лекции.

Какое минимальное число сравнений нужно, чтобы построить обычную бинарную кучу? Докажите максимально точную нижнюю оценку. Для простоты вычислений предположим, что в массиве $n=2^k-1$ элементов.

- а) (1) Хотя бы n-1 сравнений.
- b) (1.5) Хотя бы n сравнений для $n \ge 10$.
- с) (3) Оценка $1.3644 \cdot n + \mathcal{O}(1)$ без строгого доказательства.
- d) (5) Оценка $1.4999 \cdot n + \mathcal{O}(1)$ без строгого доказательства.