1-й курс ПАДИИ, весна, ДЗ #3, Д.О. и scanline СПб, Высшая Школа Экономики, 1 февраля 2024

Содержание

Задачи здорового человека	2
Задача 3A. Сумма [0.5 sec, 256 mb]	2
Задача 3В. Звёзды [0.2 sec, 256 mb]	3
Для искателей острых ощущений	4
Задача 3C. RMQ [0.7 sec, 256 mb]	4
Задача 3D. Окна [1 sec, 256 mb]	5

Обратите внимание, входные данные лежат в **стандартном потоке ввода** (он же stdin), вывести ответ нужно в **стандартный поток вывода** (он же stdout).

В некоторых задачах большой ввод и вывод. Пользуйтесь быстрым вводом-выводом.

В некоторых задачах нужен STL, который активно использует динамическую память (set-ы, map-ы) переопределение стандартного аллокатора ускорит вашу программу.

Обратите внимание на GNU C++ компиляторы с суффиксом inc, они позволяют пользоваться дополнительной библиотекой. Под ними можно сдать вот это.

Задачи здорового человека

Задача 3A. Сумма [0.5 sec, 256 mb]

Дан массив из N элементов, нужно научиться находить сумму чисел на отрезке.

Формат входных данных

Первая строка содержит два целых числа N и K — число чисел в массиве и количество запросов. ($1 \le N \le 100\,000$), ($0 \le K \le 100\,000$). Следующие K строк содержат запросы

- "А і х" присвоить i-му элементу массива значение x $(1 \le i \le n, \ 0 \le x \le 10^9)$
- "Q 1 г" найти сумму чисел в массиве на позициях от l до r. $(1 \le l \le r \le n)$

Изначально в массиве живут нули.

Формат выходных данных

На каждый запрос вида Q 1 r нужно вывести единственное число — сумму на отрезке.

Примеры

stdin	stdout
5 9	0
A 2 2	2
A 3 1	1
A 4 2	2
Q 1 1	0
Q 2 2	5
Q 3 3	
Q 4 4	
Q 5 5	
Q 1 5	

Замечание

Обыкновенное дерево отрезков. Оно же пригодится в следующей задаче ;) BST (AVL, treap) не должны заходить по времени.

Задача 3В. Звёзды [0.2 sec, 256 mb]

Астрономы часто исследуют звёздные карты, на которых звёзды представлены точками на плоскости, каждая звезда имеет декартовы координаты. Пусть уровень звезды – количество звёзд, которые не выше и не правее данной звезды. Астрономы хотят найти распределение уровней звёзд.

Для примера посмотрим на карту звёзд на картинке выше. Уровень звезды номер 5 равен 3 (т.к. есть звёзды с номерами 1, 2, 4). Уровни звёзд 2 и 4 равны 1. На данной карте есть только одна звезда на уровне 0, две звезды на уровне 1, одна звезда на уровне 2 и одна звезда на уровне 3. Напишите программу, считающую количество звёзд на каждом уровне.

Формат входных данных

Вам дан один или несколько тестов. Каждый тест описывается следующим образом.

В первой строке количество звёзд N ($1 \le N \le 15\,000$). Следующие N строк описывают координаты звёзд (два целых числа X и Y, разделённые пробелом, $0 \le X, Y \le 32,000$). В каждой точке плоскости находится не более одной звезды. Звёзды перечислены в порядке возрастания Y координаты, при равенстве в порядке возрастания X координаты.

Формат выходных данных

Выведите ответ для каждого теста. Ответ для теста описывается следующим образом. N строк, по одному числу в строке. i-я строка содержит количество звёзд на уровне i (i=0...N-1).

Примеры

stdin	stdout
5	1
1 1	2
5 1	1
7 1	1
3 3	0
5 5	1
5	2
1 1	1
5 1	1
7 1	0
3 3	
5 5	

Замечание

Простейший scanline. Разобран на практике.

Подходящее дерево отрезков написано в предыдущей задаче.

Для искателей острых ощущений

Задача 3C. RMQ [0.7 sec, 256 mb]

Дан массив a[1..n]. Требуется написать программу, обрабатывающую два типа запросов.

- \bullet "max l r". Найти максимум в массиве a от l-ой ячейки до r-ой включительно.
- "add $l \ r \ v$ ". Прибавить значение v к каждой ячейке a [] от l-ой до r-ой включительно.

Формат входных данных

Первая строка содержит два целых числа n и q ($1 \le n, q \le 10^5$) — длина массива и число запросов соответственно. Вторая строка содержит n целых чисел a_1, \ldots, a_n ($|a_i| \le 10^5$), задающих соответствующие значения массива. Следующие q строк содержат запросы.

В зависимости от типа запрос может иметь вид либо "max l r", либо "add l r v". $1 \le l \le r \le n, |v| \le 10^5$.

Формат выходных данных

Для каждого запроса вида " $\max l \ r$ " требуется в отдельной строке выдать значение соответствующего максимума.

Примеры

stdin	stdout
5 3	3
1 2 3 4 -5	7
max 1 3	
add 1 2 5	
max 1 3	

Замечание

Дерево отрезков с отложенными операциями.

Задача 3D. Окна [1 sec, 256 mb]

На экране расположены прямоугольные окна, каким-то образом перекрывающиеся (со сторонами, параллельными осям координат). Вам необходимо найти точку, которая покрыта наибольшим числом из них.

Формат входных данных

В первой строке входного файла записано число окон $n \ (1 \le n \le 50\,000)$.

Следующие n строк содержат координаты окон $x_{(1,i)}$ $y_{(1,i)}$ $x_{(2,i)}$ $y_{(2,i)}$, где $\langle x_{(1,i)}, y_{(1,i)} \rangle$ — координаты левого верхнего угла i-го окна, а $\langle x_{(2,i)}, y_{(2,i)} \rangle$ — правого нижнего (на экране компьютера y растет сверху вниз, а x — слева направо).

Все координаты — целые числа, по модулю не превосходящие $2 \cdot 10^5$.

Формат выходных данных

В первой строке выходного файла выведите максимальное число окон, покрывающих какую-либо из точек в данной конфигурации. Во второй строке выведите два целых числа, разделенные пробелом — координаты точки, покрытой максимальным числом окон. Окна считаются замкнутыми, т.е. покрывающими свои граничные точки.

Пример

stdin	stdout
2	2
0 0 3 3	3 2
1 1 4 4	

Замечание

Scanline. Похожая задача разобрана на практике.