Первый курс, осенний семестр 2018/19 Практика по алгоритмам #5

Бинпоиск и сортировка 6 октября

Собрано 6 октября 2018 г. в 21:21

Содержание

1. Бинпоиск и сортировка	1
2. Разбор задач практики	3
3. Домашнее задание	6
3.1. Обязательная часть	7

Бинпоиск и сортировка

1. Нижняя оценка на почти рабочую сортировку

Покажите, что любая сортировка, которая верно работает хотя бы на доле $\frac{1}{100}$ от всех перестановок, работает за $\Omega(n \log n)$.

2. Сложность случайных сортировок

Есть много разных сортировок. Есть даже такие, что работают дольше, чем квадрат. Оцените время работы в среднем следующих сортировок:

while not sorted

- a) i = rand(), j = rand(), if a[min(i,j)] > a[max(i,j)] swap
- b) (*) i = rand(), j = rand(), swap

3. Почти отсортированный массив

В массиве длины n каждый элемент отстоит от своей правильной позиции на $\leq k$.

- а) Отсортируйте за $\mathcal{O}(nk)$.
- b) Отсортируйте за $\mathcal{O}(n+I)$, где I число инверсий.
- c) Отсортируйте за $\mathcal{O}(n \log k)$.
- d) Докажите нижнюю оценку на время сортировки $\Omega(n \log k)$.

4. Anti-QuickSort test

Пусть в качестве разбивающего элемента всегда берется средний элемент: $\lfloor (l+r)/2 \rfloor$. Построить массив длины n, на котором QuickSort отработает за $\Omega(n^2)$.

5. Ломаная без самопересечений

Дано n точек на плоскости. За $\mathcal{O}(n \log n)$ соединить их

- а) (n-1)-звенной ломаной без самопересечений (не замкнутой);
- b) *п*-звенной ломаной без самопересечений (замкнутой).

6. Сканирование отрезков

Дан набор из n отрезков $[a_i, b_i]$, где a_i, b_i – вещественные.

- а) Выбрать максимальное число непересекающихся отрезков. $\mathcal{O}(n \log n)$.
- b) Найти такое вещественное x, что $|\{i : x \in [a_i, b_i]\}|$ максимально.
- c) Для каждого k посчитать длину множества точек, покрытых ровно k отрезками.

7. Покраска забора

Есть q запросов вида color(1, r, c): покраска отрезка [1..r] массива в цвет с.

В конце вывести получившийся массив. Решение в offline за $\mathcal{O}(n+q\log q)$.

(*) Решите ещё быстрее ;-)

8. Коровы – в стойла!

Есть m стойл с координатами x_1, \ldots, x_m и n коров. Расставить коров по стойлам так, чтобы минимальное расстояние между коровами было максимально.

9. Поиск точки разреза

- а) Дан массив $a_1 < a_2 < \ldots < a_k > a_{k+1} > \ldots > a_n$. За $\mathcal{O}(\log n)$ найти k.
- b) Дан массив $a_1 \leqslant a_2 \leqslant \ldots \leqslant a_k \geqslant a_{k+1} \geqslant \ldots \geqslant a_n$. За $\mathcal{O}(\log n)$ найти k.
- с) (*) Дан циклический сдвиг на k строго возрастающего массива. За $\mathcal{O}(\log n)$ найти k.

10. (*) Второй максимум

Найти второй максимум в массиве за $n + \mathcal{O}(\log n)$ сравнений.

11. (*) Binary search lower bound

Доказать, что «бинпоиск», который умеет делить на структуре данных, которая даёт доступ к i-му элементу за $\Theta(i)$ и больше ничего не умеет, работает за $\Omega(n \log n)$ в худшем случае.

12. (*) Randomized sort lower bound

Покажите, что не существует такой вероятностной сортировки, которая корректно сортирует массив с вероятностью не менее $\frac{1}{2}$ и имеет среднее время работы (матожидание) $o(n \log n)$.

Разбор задач практики

1. Нижняя оценка на почти рабочую сортировку

Чтобы различить $\frac{1}{100}n!$ вариантов ответа, нужно хотя бы $\log(\frac{1}{100}n!) = \Omega(n\log n)$ сравнений.

2. Сложность случайных сортировок

Если с вероятностью p монетка выпадет орлом, то среднее число подкидываний до первого орла $E = \frac{1}{n}$.

Доказательство: E = 1 + (1 - p)E (один бросок делаем всегда, с вероятностью 1 - p не повезло, и нужно повторить процесс).

Функцию sorted можно вызывать не каждый раз, а раз в n шагов, тогда её амортизированная сложность $\mathcal{O}(1)$.

а) Каждый **swap** уменьшает число инверсий I хотя бы на один. T(I) – время работы, если сейчас I инверсий.

Вероятность попасть в инверсию $p = \frac{I}{n(n-1)/2} \Rightarrow$ среднее число проб до попадания в инверсию $\frac{n(n-1)/2}{\operatorname{Inv}}$. $T(I) \leqslant \frac{n(n-1)/2}{I} + T(I-1) = \frac{n(n-1)}{2} \sum_{j=1}^{I} \frac{1}{j} = \mathcal{O}(n^2 \log n)$. Забавные факты. Более точный анализ даст оценку $\Theta(n^2)$. Если, когда инверсий оста-

$$T(I) \leqslant \frac{n(n-1)/2}{I} + T(I-1) = \frac{n(n-1)}{2} \sum_{j=1}^{I} \frac{1}{j} = \mathcal{O}(n^2 \log n).$$

лось $\approx n \log^2 n$, переключиться на сортировку вставками, время будет $\Theta(n \log^2 n)$.

b) На каждом шаге перестановка близка к случайной \Rightarrow с вероятностью $\frac{1}{n!}$ отсортирована \Rightarrow среднее время работы $\Theta(n!)$.

3. Почти отсортированный массив

- а) За $\mathcal{O}(nk)$. Сортировка вставками. k итераций пузырька. Сортировка выбором из k ближайших.
- b) За $\mathcal{O}(n+I)$: сортировка вставками (см. лекцию).
- c) $\exists a \, \mathcal{O}(n \log k)$.
 - Способ #1. Поддерживаем в куче элементы a[i..i+k]. На каждом шаге приписываем к результату минимум из кучи и кладем в кучу следующий (i+k+1) элемент.
 - Способ #2. Разбиваем массив на кусочки длины k, сортируем каждый, затем слева направо сливаем куски: merge(1,2), merge(2,3), merge(3,4), ...

Корректность: после первого merge все элементы первого куска стоят на своих местах, т.к. исходно находились или в первом, или во втором. Далее по индукции.

d) Нижняя оценка $\Omega(n \log k)$: в *i*-м куске длины k может быть любая перестановка элементов $ik+1,\ldots,ik+k$, на сортировку каждого куска нужно $k \log k$ сравнений, кусков n/k. Иными словами: число перестановок, которые нужно уметь отличать, не менее $(k!)^{n/k}$. Получаем число сравнений не менее $\log(k!)^{n/k} = \frac{n}{k} \log k! = \Omega(n \log k)$.

4. Anti-QuickSort test

Чтобы QSort работал за квадрат, достаточно получить реккурентность T(n) = T(n-1) + n.

- а) Если разбиваем по первому элементу, то подойдут $\{1, 2, \dots, n\}$ и $\{n, \dots, 2, 1\}$.
- b) Если разбиваем по среднему, поставим в середину число n.

Нужно, чтобы после partition получился плохой массив размера n-1.

Пусть partition реализован так: $code \Rightarrow$

во время partition средний элемент n поменяется местами с последним.

Строим рекурсивно массив a длины n-1, пишем в конец n, делаем swap(a[n/2], a[n-1]).

5. Ломаная без самопересечений

- а) Ломаная: sort пар $\langle x, y \rangle$, соединим в таком порядке.
- b) Замкнутая ломаная: вокруг любой из данных точек **sort** по углу, при равенстве по возрастанию расстояния. Точки с самым большим углом нужно сортировать по убыванию расстояния.

6. Сканирование отрезков

а) **Непересекающиеся отрезки.** Отрезок = $[L_i, R_i]$. Сортируем по возрастанию R_i , жадно берём отрезки. Проверка, что можно взять: $L_i > R_{\text{last}}$.

Корректность: рассмотрим любой ответ, пусть в нём нет min по R_i отрезка. Тогда можно заменить самый левый на min по R_i , он заканчивается ещё левее \Rightarrow не пересечётся с оставшимися. Итого \exists оптимальный ответ, содержащий min по R_i .

Из оставшихся по индукции выгодно снова взять минимальный по R_i .

b) События. Пары $(l_i, open), (r_i, close)$ назовём событиями, сортируем их (open < close). Сканируем все события слева направо, поддерживая число открытых отрезков. Находясь в точке x, мы прошли все события левее $x \Rightarrow$ знаем, сколько отрезков накрывает x. При целых координатах часто удобно делать $(l_i, open), (r_i + 1, close)$.

7. Покраска забора

- Если мы владеем деревом отрезков с присваиванием на отрезке, то можно напрямую применить его к этой задаче. $\mathcal{O}(n+q\log n)$. Если не владеем, это прекрасно, задачу можно решить проще!
- Идем слева направо, обрабатывем события «начало отрезка» и «конец отрезка». Храним открытые отрезки в куче (set), сортирующей их по времени покраски. Каждую точку красим в цвет открытого отрезка с самым поздним временем. Для каждой точки цвет узнаем за $\mathcal{O}(1)$ (посмотреть минимум), каждое начало и конец отрезка положить или вынуть из кучи за $\mathcal{O}(\log q)$.
- Будем выполнять запросы с конца. Выполнить запрос = покрасить все ещё не покрашенные клетки на отрезке. Пусть у каждой клетки i есть цвет c_i и указатель на ближайшую справа непокрашенную p_i . Тогда

```
int paint( int 1, int r, int color ) {
  if (1 > r) return 1;
  if (c[1] == -1) c[1] = color;
  return p[1] = paint(p[1], r, color);
}
```

paint возвращает клетку, до которой докрасил.

Заметим сходство этого кода с СНМ со сжатием путей. В таком виде он работает за $\mathcal{O}((n+q)\log n)$. Если добавить ранговую эвристику, будет $\mathcal{O}((n+q)\alpha(n))$.

8. Коровы – в стойла!

Бинпоиск по ответу. Проверка, что можно выбрать m стойл на расстоянии $\geqslant d$: самое левое берём, от него самое левое на расстояние хотя бы d и т.д.

9. Поиск точки разреза

- а) Предикат « $a_i > a_{i-1}$ » сперва TRUE, затем FALSE. Бинпоиском ищем границу.
- b) Рассмотрим массив $\{1,1,\ldots,1,1,2,1,1,\ldots,1,1\}$. Мы ищем число 2, оно может быть на любой позиции. Если мы посмотрели не все ячейки, то число 2 может оказаться там, где не смотрели \Rightarrow в худшем случае нужно просмотреть все n ячеек.
- c) Предикат « $a_i \geqslant a_0$ » сперва TRUE, затем FALSE. Бинпоиском ищем границу.

10. (*) Второй максимум

Рандомизированное решение. Сделаем random_shuffle массива, который делает 0 сравнений и работает за $\mathcal{O}(n)$. Теперь:

```
int m1 = a[1], m2 = INT_MIN;
for (int i = 2; i <= n; i++)
    if (a[i] > m2)
        if (a[i] > m1) m2 = m1, m1 = a[i];
    else m2 = a[i];
```

На i-й итерации цикла мы войдём в if с вероятностью $\frac{2}{i}$, поэтому число сравнений равно $n-1+\sum_{i=2}^n\frac{2}{i}=n+2\ln n+\Theta(1).$

Детерминированное решение. Воспользуемся кучей.

Построить кучу мы за n сравнений не сможем, зато можем толкнуть каждый элемент вверх.

```
for (int i = n; i > 1; i++) if (a[i / 2] < a[i]) swap(a[i / 2], a[i]);
```

В результате максимум всплывёт вверх. Где искать второй максимум? Он не всплыл до корня, потому что где-то по дороге встретился с первым максимумом \Rightarrow он в детях вершин, по которым прошел максимум, всего $\log_2 n$ кандидатов.

11. (*) Binary search lower bound

Пусть искомый элемент находится в последних $\frac{n}{2}$ элементах. Тогда, чтобы его найти нам нужно сделать хотя бы $\log \frac{n}{2}$ обращений к элементам, чтобы различить $\frac{n}{2}$ возможных ответов. Каждое обращение работает хотя бы за $\frac{n}{2}$. Итого $\Omega(n \log n)$.

12. (*) Randomized sort lower bound

Есть ещё более сложная задача: дать оценку $\Omega(n \log n)$ на число сравнений. Нам же нужно оценить лишь время работы, поэтому число случайных бит r, которые мы просмотрим, то же должно быть $o(n \log n)$. Итого k сравнений + r случайных бит дают 2^{r+k} различных исходов \Rightarrow для корректной сортировки $2^{r+k} \geqslant n! \Rightarrow r+k = \Omega(n \log n)$.

Домашнее задание

3.1. Обязательная часть

1. (3) Сложность сортировок

- а) (1) Покажите, что любая сортировка, которая верно работает хотя бы на доле $\frac{1}{100^n}$ от всех перестановок, не может работать за $o(n \log n)$ на всех тестах.
- b) (1) Покажите, что нельзя реализовать структуру данных, которая умеет то же, что и куча: Add, и ExtractMin, но за $o(\log n)$ сравнений.
- с) (1) Покажите, что нельзя сделать merge(a, a+n/2, a+n) за o(n) сравнений. merge сливает левую и правую половины, результат кладёт в [a, a+n))

2. (2) Anti-QuickSort test

Построить за $\mathcal{O}(n^2)$ перестановку длины n, на котором QuickSort отработает за $\Omega(n^2)$, если разбивающего элемента берется следующим образом.

Есть некоторая **произвольная** детерминированная функция pivot(1, r), она возвращает число от 1 до r, x = a[pivot(1, r)].

Есть произвольная детерминированая partition(1, r, x). То, как она переставит элементы на отрезке [1, r], зависит только от результатов сравнения элементов с x. Естественно, она делает partition — сначала ставит элементы < x, потом x, потом > x.

Алгоритм построения плохой перестановки имеет право вызывать и pivot, и partition.

(*) Можно получить (+1) балл для следующего случая: pivot(1, r) возвращает три индекса $1 \le i$, j, $k \le r$. За x берется медиана чисел a[i], a[j], a[k]. Дальше то же самое.

3. **(5)** Отрезки на прямой

Дано n отрезков $[a_i, b_i]$.

- а) (1.5) Найти длину объединения отрезков.
- b) (1.5) Выбрать минимальное число отрезков, покрывающих отрезок [0, M]. $\mathcal{O}(n \log n)$. В этой задаче важна строгость доказательства.
- с) (2) Теперь пусть границы отрезка меняются со временем. i-й отрезок в момент времени t равен $[x_i t \cdot r_i, x_i + t \cdot r_i]$. Найти первый момент времени, когда отрезки покроют [0, M].

4. (2) Ускорение SiftUp

Модифицируйте операцию SiftUp для бинарной кучи так, чтобы она по-прежнему работала за $\mathcal{O}(\log n)$, но при этом делала лишь $\mathcal{O}(\log\log n)$ сравнений.

5. (2) Ускорение SiftDown

Модифицируйте операцию SiftDown для бинарной кучи так, чтобы она по-прежнему работала за $\mathcal{O}(\log n)$, но при этом делала лишь $\log_2 n + \mathcal{O}(\log\log n)$ сравнений.

3.2. Дополнительная часть

1. (2) Различные элементы

Задача: дан массив, проверить, что все элементы различны.

Пусть для работы с элементами массива нам доступна только операция сравнения.

Доказать оценку $\Omega(n \log n)$ на число сравнений.

2. (2) Дополнительные отрезки на прямой

Есть n отрезков на прямой. Выбрать из них максимальное по размеру множество, покрывающее каждую точку не более, чем k раз. Важна строгость доказательства.

3. (2) Отрезки на окружности

Есть n отрезков на окружности. Выбрать из них максимальное по размеру множество, покрывающее каждую точку не более, чем один раз. Оцениваться будут решения за $o(n^2)$.