Solving The Words Search Problem

Ivan Kazmenko

St. Petersburg State University

Tuesday, July 5, 2011

Outline

- The Problem
 - Al Zimmermann's Programming Contests
 - The Words Search Problem
 - Example Grids
- 2 The Solution
 - Utilizing Classic Approaches
 - What We Can Change
 - Heuristics
 - Implementation Details
- The Result
 - Benchmarks
 - Final Standings

Outline

- The Problem
 - Al Zimmermann's Programming Contests
 - The Words Search Problem
 - Example Grids
- 2 The Solution
 - Utilizing Classic Approaches
 - What We Can Change
 - Heuristics
 - Implementation Details
- The Result
 - Benchmarks
 - Final Standings

Al Zimmermann's Programming Contests

- Held once or twice a year
- 17 contests so far since year 2001
- Typically lasts two or three months
- Each contest poses an optimization problem
- Participants run programs locally and submit answers
- Old Site: http://recmath.org/contest
- New Site: http://azspcs.net
- Our focus: contest #14, Words Search (Fall 2007)
 - 152 participants from 31 country
 - 26 596 total submissions

The Words Search Problem

- ullet Fit as many words as possible into a 15 imes 15 grid
- Words can go horizontally, vertically or diagonally in eight possible directions
- Word List:
 - ENABLE2K, a popular list for word games
 - 173 528 English words
- Subproblems:
 - There are 27 subproblems: 'A'-'Z' and All letters
 - For the 'A'-'Z' subproblems, only words containing the specific letter are counted
- Scoring System:
 - Each word is counted only once
 - For each word, the score is the length of the word
 - For each empty cell, the score is 1
 - You get yours/record points for each subproblem

• Subproblem: All letters

• Score: 4206

Author: Vadim Trofimov

S	D	S	M	U	T	S	D	R	A	W	E	R	S	Α
В	T	0	E	S	D	Е	Е	S	Е	S	Α	Е	T	K
R	R	N	R	N	С	T	G	D	R	T	N	G	R	S
A	E	E	E	A	0	A	Α	Е	0	I	I	A	0	G
G	V	M	L	V	D	R	M	В	В	В	M	L	W	N
Α	Е	Α	Α	I	Е	0	Ι	A	Е	U	Α	Е	Е	I
S	I	L	T	D	V	S	S	S	S	С	L	A	D	S
R	L	F	E	E	Е	Е	T	Е	Е	S	S	S	Α	U
Е	Е	Α	R	М	L	P	R	R	T	P	Е	T	В	В
Н	R	S	I	0	0	A	Α	0	A	Α	I	S	U	Α
S	E	T	T	D	P	T	P	С	Т	N	L	R	T	Н
Α	Р	S	E	Е	Е	Е	Е	S	S	E	G	A	T	S
L	I	Α	R	D	R	R	S	T	Е	E	P	E	Е	S
P	N	P	D	I	S	P	U	Т	Е	S	Y	Α	R	D
S	S	0	F	T	Е	N	S	С	R	Α	M	P	S	S

• Subproblem: Letter 'Q'

• Score: 1283

• Author: Ivan Kazmenko

N		G	N	I	Y	F	Ι	L	A	U	Q	E	R	P
0	0	P	Α	Q	U	Е	S	Т	Е	U	Q	0	R	С
N	D	E	R	I	U	Q	S	P	I	U	Q	Е	Е	R
U	Е	S	D	Е	T	A	U	Q	Е	0	С	М	М	Е
N	Х	T	P	Ι	R	R	G	Y	U	0	U	A	A	Α
I	С	Α	Ι	I	S	Е	S	S	N	S	С	S	R	С
Q	Н	N	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
U	E	Α	U	U	U	U	U	U	U	U	U	U	U	U
Е	Q	Q	E	Α	A	Е	Α	I	I	Ι	Α	I	Е	Α
N	U	U	S	R	S	S	T	N	Е	R	L	D	S	I
Е	E	Α	E	Т	Н	T	T	Т	Т	T	E	L	S	N
S	R	R	S	Е	Е	Е	Е	S	Е	S	U	S	A	Т
S	S	I	S	R	R	R	R	R	S	S		D	T	S
Е		Α	S	S	S	S	S	Е	T	I	U	Q	Е	R
S	I	N	С	0	N	S	Е	Q	U	E	N	С	Е	S

Outline

- The Problem
 - Al Zimmermann's Programming Contests
 - The Words Search Problem
 - Example Grids
- 2 The Solution
 - Utilizing Classic Approaches
 - What We Can Change
 - Heuristics
 - Implementation Details
- The Result
 - Benchmarks
 - Final Standings

1. Full Search

Search Space

 $27^{15\times15}\approx10^{322}$ possible grids

...way too many

1. Full Search

Search Space

 $27^{15\times15}\approx10^{322}$ possible grids

... way too many.

2. Random Search

- Search Space
- Objective Function
- Action

 $27^{15 \times 15} \approx 10^{322}$ possible grids scoring function S generate and score a random grid

Analysis

- It takes much time to score a single grid
- We look at some random average grids

2. Random Search

- Search Space
- Objective Function
- Action

- $27^{15 \times 15} \approx 10^{322}$ possible grids
- scoring function S
- generate and score a random grid

Analysis:

- It takes much time to score a single grid
- We look at some random average grids

3. Brownian Motion

- Search Space
- Objective Function
- Local Change
- Accepting Rule

 $27^{15\times15}\approx10^{322}$ possible grids

scoring function S

change a single cell

always accept

Analysis

- Recalculating the score is faster than scoring the whole grid
- We still look at some random average grids

3. Brownian Motion

- Search Space
- Objective Function
- Local Change
- Accepting Rule

- $27^{15\times15}\approx10^{322}$ possible grids
- scoring function S
- change a single cell
- always accept

Analysis:

- Recalculating the score is faster than scoring the whole grid
- We still look at some random average grids

4. Hill Climbing

- Search Space
- Objective Function
- Local Change
- Accepting Rule

 $27^{15\times15}\approx10^{322}$ possible grids

scoring function S

change a single cell

accept if $S_{new} \geq S_{old}$

Analysis

- Recalculating the score is faster than scoring the whole grid
- We now find some good grids
- No way to leave a local maximum

4. Hill Climbing

- Search Space
- Objective Function
- Local Change
- Accepting Rule

- $27^{15\times15}\approx10^{322}$ possible grids
- scoring function S

change a single cell

accept if $S_{new} \geq S_{old}$

Analysis:

- Recalculating the score is faster than scoring the whole grid
- We now find some good grids
- No way to leave a local maximum

5. Simulated Annealing

- Search Space
- Objective Function
- Local Change
- Accepting Rule
- Schedule

- $27^{15\times15}\approx10^{322}$ possible grids
- scoring function S
- change a single cell
- accept if $\xi < \exp\left((S_{new} S_{old})/\mathcal{T}\right)$
- gradually lower temperature \mathcal{T} : $+\infty$ to 0

Here, $\xi \in \mathcal{U}(0,1)$ (uniform distribution).

- When $S_{new} \geq S_{old}$, $P = (S_{new} S_{old})/T \geq 0$, so we always accept the change
- When $S_{new} < S_{old}$, $P = (S_{new} S_{old})/T < 0$,
 - ullet When ${\mathcal T}$ is large, |P| is small, so $\exp{(P)} pprox 1~(pprox {\sf Brownian Motion})$
 - When \mathcal{T} is small, |P| is large, so $\exp(P) \approx 0 \ (\approx \text{Hill Climbing})$
 - In between, we try to get into a "good subspace"

5. Simulated Annealing

- Search Space $27^{15 \times 15} \approx 10^{322}$ possible grids
- Objective Function scoring function S
- Local Change change a single cell
- Accepting Rule accept if $\xi < \exp\left((S_{new} S_{old})/\mathcal{T}\right)$
- ullet Schedule gradually lower temperature $\mathcal{T}\colon +\infty$ to 0

Here, $\xi \in \mathcal{U}(0,1)$ (uniform distribution).

- When $S_{new} \geq S_{old}$, $P = (S_{new} S_{old})/T \geq 0$, so we always accept the change
- When $S_{new} < S_{old}$, $P = (S_{new} S_{old})/\mathcal{T} < 0$,
 - When $\mathcal T$ is large, |P| is small, so $\exp{(P)} pprox 1~(pprox \mathsf{Brownian}~\mathsf{Motion})$
 - When $\mathcal T$ is small, |P| is large, so $\exp(P) \approx 0 \ (\approx \mathsf{Hill} \ \mathsf{Climbing})$
 - In between, we try to get into a "good subspace"

6. Threshold Accepting

- Search Space
- Objective Function
- Local Change
- Accepting Rule
- Schedule

 $27^{15 \times 15} \approx 10^{322}$ possible grids

scoring function S

change a single cell

accept if $S_{old} - S_{new} \leq T$

gradually lower threshold T: $+\infty$ to 0

Here, the analysis is simpler.

- When $S_{new} \geq S_{old}$, we always accept the change
- When $S_{new} < S_{old}$,
 - ullet When T is large, we usually accept (pprox Brownian Motion)
 - When T is small, we usually reject (\approx Hill Climbing)
 - In between, we try to get into a "good subspace"

6. Threshold Accepting

Search Space

 $27^{15\times15}\approx10^{322}$ possible grids

Objective Function

scoring function *S*

Local ChangeAccepting Rule

change a single cell accept if $S_{old} - S_{new} < T$

Schedule

gradually lower threshold $T: +\infty$ to 0

Here, the analysis is simpler.

- When $S_{new} \geq S_{old}$, we always accept the change
- When $S_{new} < S_{old}$,
 - ullet When T is large, we usually accept (pprox Brownian Motion)
 - When T is small, we usually reject (\approx Hill Climbing)
 - In between, we try to get into a "good subspace"

For this problem, simulated annealing works best.

What next?

- Search Space
- Objective Function
- Local Change
- Accepting Rule
- Schedule

 $27^{15 imes 15} pprox 10^{322}$ possible grids scoring function S change a single cell accept if $\xi < \exp{((S_{new} - S_{old})/\mathcal{T})}$ gradually lower temperature \mathcal{T} : $+\infty$ to 0

- Search Space
- Objective Function
- Local Change
- Accepting Rule
- Schedule

 $27^{15 \times 15} \approx 10^{322}$ possible grids

scoring function S

change a single cel

accept if $\xi < \exp((S_{new} - S_{old})/T)$

gradually lower temperature \mathcal{T} : $+\infty$ to 0

Experiments:

- Different starting and ending temperatures
- Different temperature switching mechanisms:
 - for $(T = 10.0; T \ge 0.1; T *= 0.99999)$
 - Lower the temperature after x steps
 - Lower the temperature after either x steps or y accepts
 - Increase the temperature when we have too little accepts

Search Space

Objective Function

Local Change

Accepting Rule

Schedule

 $27^{15 \times 15} \approx 10^{322}$ possible grids

scoring function S

change a single cel

accept if $\xi < \exp\left((S_{new} - S_{old})/\mathcal{T}\right)$

gradually lower temperature 7 : $+\infty$ to (

No change: we already chose to do Simulated Annealing.

- Search Space
- Objective Function
- Local Change
- Accepting Rule
- Schedule

 $27^{15 \times 15} \approx 10^{322}$ possible grid scoring function S

change a single cell

accept if
$$\xi < \exp((S_{new} - S_{old})/T)$$

gradually lower temperature $T: +\infty$ to 0

Different modes:

- ullet Consider just one random local change at a time (for high ${\cal T})$
- \bullet Consider every possible local change, assign probabilities and choose a random one (for low $\mathcal{T})$

- Search Space
- Objective Function
- Local Change
- Accepting Rule
- Schedule

 $27^{15 \times 15} \approx 10^{322}$ possible grids scoring function S

change a single cell

gradually lower temperature \mathcal{T} : $+\infty$ to (

Possible local changes:

- Select a random word and write it in a random place (good for "hard" letters J, Q, X, Z)
- Assign probabilities to letters (based on word list, adjacent cells, etc.)

- Search Space
- Objective Function
- Local Change
- Accepting Rule
- Schedule

 $27^{15 imes15}pprox10^{322}$ possible grids

scoring function S

change a single cel

accept if $\xi < \exp\left((S_{new} - S_{old})/\mathcal{T}
ight)$

gradually lower temperature 7: $+\infty$ to 0

Experiments:

Don't give points for very short words, hoping to get them anyway

- Search Space
- Objective Function
- Local Change
- Accepting Rule
- Schedule

$27^{15\times15}\approx10^{322}$ possible grids

scoring function S

change a single cel

accept if $\xi < \exp\left((S_{new} - S_{old})/\mathcal{T}\right)$

gradually lower temperature 7 : $+\infty$ to 0

Tradeoff:

- Possibly exclude some very good solutions, but:
- Increase speed of finding good solutions in what's left, and
- Obtain a "good subspace" with better average

- Search Space
- Objective Function
- Local Change
- Accepting Rule
- Schedule

 $27^{15\times15}\approx10^{322}$ possible grids

scoring function S

change a single cel

accept if $\xi < \exp\left((S_{new} - S_{old})/\mathcal{T}\right)$

gradually lower temperature 7 : $+\infty$ to 0

Experiments:

- For the "easy" letters, exclude "hard" letters and words containing them from consideration
- Find many good solutions; then, for future searches, exclude words that are not present in any of them
- Find many good solutions; assign probabilities to the letters used in local changes

- Search Space
- Objective Function
- Local Change
- Accepting Rule
- Schedule

 $27^{15\times15}\approx10^{322}$ possible grids

scoring function S

change a single cel

accept if $\xi < \exp((S_{new} - S_{old})/\mathcal{T})$

gradually lower temperature 7 : $+\infty$ to 0

Patterns:

- Manually recognize patterns, e. g. several equal letters in a certain row
 - Hard fix: do not permit changing
 - Soft fix: penalize score for changing
- Obtain patterns by merging previous good solutions

• Subproblem: Letter 'Q'

• Score: 1283

• Author: Ivan Kazmenko

N		G	N	I	Y	F	I	L	A	U	Q	E	R	P
0	0	P	Α	Q	U	Е	S	Т	E	U	Q	0	R	C
N	D	E	R	I	U	Q	S	P	I	U	Q	E	E	R
U	E	S	D	E	T	A	U	Q	Е	0	C	M	M	Е
N	Х	T	P	I	R	R	G	Y	U	0	U	A	A	Α
Ι	С	Α	Ι	I	S	Е	S	S	N	S	С	S	R	С
Q	H	N	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q	Q
U	Е	Α	U	U	U	U	U	U	U	U	U	U	U	U
E	Q	Q	E	A	A	Е	A	I	I	I	Α	I	Е	Α
N	U	U	S	R	S	S	T	N	Е	R	L	D	S	I
E	E	Α	E	T	Н	T	T	Т	T	T	E	L	S	N
S	R	R	S	E	Е	Е	Е	S	Е	S	U	S	A	Т
S	S	I	S	R	R	R	R	R	S	S		D	T	S
Е		Α	S	S	S	S	S	Е	T	I	U	Q	Е	R
S	I	N	С	0	N	S	Е	Q	U	E	N	С	Е	S

• Search Space $27^{15 \times 15} \approx 10^{322}$ possible grids

• Objective Function scoring function S

Local Change change a single cell

• Accepting Rule $\qquad \qquad \text{accept if } \xi < \exp\left((S_{new} - S_{old})/\mathcal{T}\right)$

ullet Schedule gradually lower temperature $\mathcal{T}\colon +\infty$ to 0

After all experiments, refine the result running simulated annealing again with basic parameters.

Other techniques used for "hard" letters J, Q, X, Z:

- Start with an empty grid
- Try to put each possible word in each possible position in random order using Hill Climbing
- Continue until no such change increases the score
- After that, run the usual simulated annealing

Other techniques used for "hard" letters J, Q, X, Z:

- Start with a good grid
- Erase a random 3×3 or 4×4 rectangle
- Try to put each possible word in each possible position in random order using Hill Climbing
- Continue until no such change increases the score
- After that, run the usual simulated annealing

When You Run Out Of Ideas...

It's Time To Optimize!

The Data Structure: Trie

- Rooted tree
- Each edge has a letter assigned
- Each node corresponds to a string obtained by traversing the path from the root
- Some nodes correspond to words

Basic Implementation:

```
typedef struct node {
    int child [26]; // array index, -1 if none
    int word; // array index, -1 if none
};
node trie [MAXNODES];
int next (int curnode, int letter)
{
    return trie[curnode].child[letter];
```

We need 108 bytes for each node.

Rescoring after changing a cell (x, y):

- Move in one of eight directions
- Starting from each visited cell, move in opposite direction and traverse a trie, looking for words containing cell (x, y)

The above procedure should be repeated twice:

- To decrease score for the old letter
- To increase score for the new letter

Optimization: For the subproblems, store only words containing specific letter

• The size of the trie is reduced

Optimization: Add reversed words to the trie

- Now we have to look only in four directions instead of eight
- Extra care should be taken for palindromes

						*	

Optimization: Add reversed prefixes to the trie

- Additionally, for each node we store the number of a "dual" node corresponding to the reversed string
- Now, all substrings and all reversed substrings of the given words are in the trie
- Now we can stop moving in a direction when the reversed prefix is not in the trie

						*	

Optimization: Build the trie using breadth-first search

- First goes the root, then all nodes corresponding to single-letter strings, etc.
- Siblings (children of a particular node in the trie) are adjacent and ordered lexicographically
- Now, instead of storing 26 indices, we can store one index pointing to the start of the children block and 26 bits indicating whether a particular child is present
- This greatly reduces the memory consumption and improves caching
- ullet On the other hand, we now need $pprox \log 26$ operations to make a single transition instead of just one

An Example:

Suppose the trie stores just the strings "ac", "aab", "abc", "abb" and "cba". The table below demonstrates how it is stored.

Index	String	bits for c, b, a	start	+a	+b	+c
0	1111	101	1	1		2
1	"a"	111	3	3	4	5
2	"c"	010	6		6	
3	"aa"	010	7		7	
4	"ab"	110	8		8	9
5	"ac"	000				
6	"cb"	001	10	10		
7	"aab"	000				
8	"abb"	000				
9	"abc"	000				
10	"cba"	000				

```
Final Implementation:

typedef struct node {
   int bits, start, dual, word;
};

node trie [MAXNODES];
```

A node occupies only 16 bytes.

Final Implementation:

```
inline int next (int curnode, int letter)
{
   letter = 1 << letter;</pre>
   if (!(trie[curnode].bits & letter))
       return -1;
   int res;
   res = trie[curnode].bits & (letter - 1);
   if (!res)
       return trie[curnode].start;
   res = (res & 0x555555555) + ((res >> 1) & (0x555555555));
   res = ((res + (res >> 4)) \& 0x0F0F0F0F):
   res += (res >> 8) + (res >> 16) + (res >> 24):
   return trie[curnode].start + char (res):
}
```

Outline

- The Problem
 - Al Zimmermann's Programming Contests
 - The Words Search Problem
 - Example Grids
- 2 The Solution
 - Utilizing Classic Approaches
 - What We Can Change
 - Heuristics
 - Implementation Details
- The Result
 - Benchmarks
 - Final Standings

Benchmarks:

On an average few minute Simulated Annealing run for All-letters:

Trie nodes: 856 291

Grids visited: 468 770 each second on an Athlon XP 3200+

• Average trie transitions for a single letter change: 101.5

Final Standings Top Ten:

Ivan Kazmenko	26.9069
Vadim Trofimov	26.8091
Fumitaka Yura	26.1996
Anton Maydell	25.8956
Mark Beyleveld	25.6342
Hanhong Xue	25.0067
Michael van Fondern	24.9398
Tudor-Mihail Pop	24.9023
Guido Schoepp & Klaus Müller	24.7280
Mikael Klasson	24.3040

The End