
Solving The Words Search Problem

Ivan Kazmenko

St. Petersburg State University

Tuesday, July 5, 2011

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 1 / 30

Outline

1 The Problem
Al Zimmermann’s Programming Contests
The Words Search Problem
Example Grids

2 The Solution
Utilizing Classic Approaches
What We Can Change
Heuristics
Implementation Details

3 The Result
Benchmarks
Final Standings

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 2 / 30

The Problem

Outline

1 The Problem
Al Zimmermann’s Programming Contests
The Words Search Problem
Example Grids

2 The Solution
Utilizing Classic Approaches
What We Can Change
Heuristics
Implementation Details

3 The Result
Benchmarks
Final Standings

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 3 / 30

The Problem Al Zimmermann’s Programming Contests

Al Zimmermann’s Programming Contests
Held once or twice a year
17 contests so far since year 2001
Typically lasts two or three months
Each contest poses an optimization problem
Participants run programs locally and submit answers
Old Site: http://recmath.org/contest
New Site: http://azspcs.net
Our focus: contest #14, Words Search (Fall 2007)

152 participants from 31 country
26 596 total submissions

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 4 / 30

http://recmath.org/contest
http://azspcs.net

The Problem The Words Search Problem

The Words Search Problem
Fit as many words as possible into a 15× 15 grid
Words can go horizontally, vertically or diagonally in eight possible
directions
Word List:

ENABLE2K, a popular list for word games
173 528 English words

Subproblems:
There are 27 subproblems: ‘A’–‘Z’ and All letters
For the ‘A’–‘Z’ subproblems, only words containing the specific letter
are counted

Scoring System:
Each word is counted only once
For each word, the score is the length of the word
For each empty cell, the score is 1
You get yours/record points for each subproblem

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 5 / 30

The Problem Example Grids

Subproblem: All letters
Score: 4206
Author: Vadim Trofimov

S D S M U T S D R A W E R S A
B T O E S D E E S E S A E T K
R R N R N C T G D R T N G R S
A E E E A O A A E O I I A O G
G V M L V D R M B B B M L W N
A E A A I E O I A E U A E E I
S I L T D V S S S S C L A D S
R L F E E E E T E E S S S A U
E E A R M L P R R T P E T B B
H R S I O O A A O A A I S U A
S E T T D P T P C T N L R T H
A P S E E E E E S S E G A T S
L I A R D R R S T E E P E E S
P N P D I S P U T E S Y A R D
S S O F T E N S C R A M P S S

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 6 / 30

The Problem Example Grids

Subproblem: Letter ‘Q’
Score: 1283
Author: Ivan Kazmenko

N G N I Y F I L A U Q E R P
O O P A Q U E S T E U Q O R C
N D E R I U Q S P I U Q E E R
U E S D E T A U Q E O C M M E
N X T P I R R G Y U O U A A A
I C A I I S E S S N S C S R C
Q H N Q Q Q Q Q Q Q Q Q Q Q Q
U E A U U U U U U U U U U U U
E Q Q E A A E A I I I A I E A
N U U S R S S T N E R L D S I
E E A E T H T T T T T E L S N
S R R S E E E E S E S U S A T
S S I S R R R R R S S D T S
E A S S S S S E T I U Q E R
S I N C O N S E Q U E N C E S

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 6 / 30

The Solution

Outline

1 The Problem
Al Zimmermann’s Programming Contests
The Words Search Problem
Example Grids

2 The Solution
Utilizing Classic Approaches
What We Can Change
Heuristics
Implementation Details

3 The Result
Benchmarks
Final Standings

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 7 / 30

The Solution Utilizing Classic Approaches

A Few Classic Approaches To Combinatorial Optimization:

1. Full Search
Search Space 2715×15 ≈ 10322 possible grids

. . . way too many.

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 8 / 30

The Solution Utilizing Classic Approaches

A Few Classic Approaches To Combinatorial Optimization:

1. Full Search
Search Space 2715×15 ≈ 10322 possible grids

. . . way too many.

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 8 / 30

The Solution Utilizing Classic Approaches

A Few Classic Approaches To Combinatorial Optimization:

2. Random Search
Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Action generate and score a random grid
Analysis:

It takes much time to score a single grid
We look at some random average grids

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 8 / 30

The Solution Utilizing Classic Approaches

A Few Classic Approaches To Combinatorial Optimization:

2. Random Search
Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Action generate and score a random grid
Analysis:

It takes much time to score a single grid
We look at some random average grids

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 8 / 30

The Solution Utilizing Classic Approaches

A Few Classic Approaches To Combinatorial Optimization:

3. Brownian Motion
Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule always accept

Analysis:
Recalculating the score is faster than scoring the whole grid
We still look at some random average grids

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 8 / 30

The Solution Utilizing Classic Approaches

A Few Classic Approaches To Combinatorial Optimization:

3. Brownian Motion
Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule always accept

Analysis:
Recalculating the score is faster than scoring the whole grid
We still look at some random average grids

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 8 / 30

The Solution Utilizing Classic Approaches

A Few Classic Approaches To Combinatorial Optimization:

4. Hill Climbing
Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if Snew ≥ Sold

Analysis:
Recalculating the score is faster than scoring the whole grid
We now find some good grids
No way to leave a local maximum

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 8 / 30

The Solution Utilizing Classic Approaches

A Few Classic Approaches To Combinatorial Optimization:

4. Hill Climbing
Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if Snew ≥ Sold

Analysis:
Recalculating the score is faster than scoring the whole grid
We now find some good grids
No way to leave a local maximum

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 8 / 30

The Solution Utilizing Classic Approaches

A Few Classic Approaches To Combinatorial Optimization:

5. Simulated Annealing
Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if ξ < exp ((Snew − Sold)/T)
Schedule gradually lower temperature T : +∞ to 0

Here, ξ ∈ U(0, 1) (uniform distribution).
When Snew ≥ Sold , P = (Snew − Sold)/T ≥ 0,
so we always accept the change
When Snew < Sold , P = (Snew − Sold)/T < 0,

When T is large, |P| is small, so exp (P) ≈ 1 (≈ Brownian Motion)
When T is small, |P| is large, so exp (P) ≈ 0 (≈ Hill Climbing)
In between, we try to get into a “good subspace”

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 8 / 30

The Solution Utilizing Classic Approaches

A Few Classic Approaches To Combinatorial Optimization:

5. Simulated Annealing
Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if ξ < exp ((Snew − Sold)/T)
Schedule gradually lower temperature T : +∞ to 0

Here, ξ ∈ U(0, 1) (uniform distribution).
When Snew ≥ Sold , P = (Snew − Sold)/T ≥ 0,
so we always accept the change
When Snew < Sold , P = (Snew − Sold)/T < 0,

When T is large, |P| is small, so exp (P) ≈ 1 (≈ Brownian Motion)
When T is small, |P| is large, so exp (P) ≈ 0 (≈ Hill Climbing)
In between, we try to get into a “good subspace”

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 8 / 30

The Solution Utilizing Classic Approaches

A Few Classic Approaches To Combinatorial Optimization:

6. Threshold Accepting
Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if Sold − Snew ≤ T

Schedule gradually lower threshold T : +∞ to 0
Here, the analysis is simpler.

When Snew ≥ Sold ,
we always accept the change
When Snew < Sold ,

When T is large, we usually accept (≈ Brownian Motion)
When T is small, we usually reject (≈ Hill Climbing)
In between, we try to get into a “good subspace”

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 8 / 30

The Solution Utilizing Classic Approaches

A Few Classic Approaches To Combinatorial Optimization:

6. Threshold Accepting
Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if Sold − Snew ≤ T

Schedule gradually lower threshold T : +∞ to 0
Here, the analysis is simpler.

When Snew ≥ Sold ,
we always accept the change
When Snew < Sold ,

When T is large, we usually accept (≈ Brownian Motion)
When T is small, we usually reject (≈ Hill Climbing)
In between, we try to get into a “good subspace”

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 8 / 30

The Solution Utilizing Classic Approaches

For this problem, simulated annealing works best.

What next?

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 9 / 30

The Solution What We Can Change

What Can We Change?

Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if ξ < exp ((Snew − Sold)/T)
Schedule gradually lower temperature T : +∞ to 0

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 10 / 30

The Solution What We Can Change

What Can We Change?

Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if ξ < exp ((Snew − Sold)/T)
Schedule gradually lower temperature T : +∞ to 0

Experiments:
Different starting and ending temperatures
Different temperature switching mechanisms:

for (T = 10.0; T >= 0.1; T *= 0.99999)
Lower the temperature after x steps
Lower the temperature after either x steps or y accepts
Increase the temperature when we have too little accepts

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 10 / 30

The Solution What We Can Change

What Can We Change?

Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if ξ < exp ((Snew − Sold)/T)
Schedule gradually lower temperature T : +∞ to 0

No change: we already chose to do Simulated Annealing.

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 10 / 30

The Solution What We Can Change

What Can We Change?

Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if ξ < exp ((Snew − Sold)/T)
Schedule gradually lower temperature T : +∞ to 0

Different modes:
Consider just one random local change at a time (for high T)
Consider every possible local change, assign probabilities and choose a
random one (for low T)

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 10 / 30

The Solution What We Can Change

What Can We Change?

Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if ξ < exp ((Snew − Sold)/T)
Schedule gradually lower temperature T : +∞ to 0

Possible local changes:
Select a random word and write it in a random place (good for “hard”
letters J, Q, X, Z)
Assign probabilities to letters (based on word list, adjacent cells, etc.)

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 10 / 30

The Solution What We Can Change

What Can We Change?

Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if ξ < exp ((Snew − Sold)/T)
Schedule gradually lower temperature T : +∞ to 0

Experiments:
Don’t give points for very short words, hoping to get them anyway

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 10 / 30

The Solution What We Can Change

What Can We Change?

Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if ξ < exp ((Snew − Sold)/T)
Schedule gradually lower temperature T : +∞ to 0

Tradeoff:
Possibly exclude some very good solutions, but:
Increase speed of finding good solutions in what’s left, and
Obtain a “good subspace” with better average

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 10 / 30

The Solution What We Can Change

What Can We Change?

Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if ξ < exp ((Snew − Sold)/T)
Schedule gradually lower temperature T : +∞ to 0

Experiments:
For the “easy” letters, exclude “hard” letters and words containing
them from consideration
Find many good solutions; then, for future searches, exclude words
that are not present in any of them
Find many good solutions; assign probabilities to the letters used in
local changes

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 10 / 30

The Solution What We Can Change

What Can We Change?

Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if ξ < exp ((Snew − Sold)/T)
Schedule gradually lower temperature T : +∞ to 0

Patterns:
Manually recognize patterns, e. g. several equal letters in a certain row

Hard fix: do not permit changing
Soft fix: penalize score for changing

Obtain patterns by merging previous good solutions

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 10 / 30

The Solution What We Can Change

Subproblem: Letter ‘Q’
Score: 1283
Author: Ivan Kazmenko

N G N I Y F I L A U Q E R P
O O P A Q U E S T E U Q O R C
N D E R I U Q S P I U Q E E R
U E S D E T A U Q E O C M M E
N X T P I R R G Y U O U A A A
I C A I I S E S S N S C S R C
Q H N Q Q Q Q Q Q Q Q Q Q Q Q
U E A U U U U U U U U U U U U
E Q Q E A A E A I I I A I E A
N U U S R S S T N E R L D S I
E E A E T H T T T T T E L S N
S R R S E E E E S E S U S A T
S S I S R R R R R S S D T S
E A S S S S S E T I U Q E R
S I N C O N S E Q U E N C E S

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 11 / 30

The Solution What We Can Change

What Can We Change?

Search Space 2715×15 ≈ 10322 possible grids
Objective Function scoring function S

Local Change change a single cell
Accepting Rule accept if ξ < exp ((Snew − Sold)/T)
Schedule gradually lower temperature T : +∞ to 0

After all experiments, refine the result running simulated annealing again
with basic parameters.

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 12 / 30

The Solution Heuristics

Other techniques used for “hard” letters J, Q, X, Z:
Start with an empty grid
Try to put each possible word in each possible position in random
order using Hill Climbing
Continue until no such change increases the score
After that, run the usual simulated annealing

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 13 / 30

The Solution Heuristics

Other techniques used for “hard” letters J, Q, X, Z:
Start with a good grid
Erase a random 3× 3 or 4× 4 rectangle
Try to put each possible word in each possible position in random
order using Hill Climbing
Continue until no such change increases the score
After that, run the usual simulated annealing

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 13 / 30

The Solution Implementation Details

When You Run Out Of Ideas...

It’s Time To Optimize!

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 14 / 30

The Solution Implementation Details

The Data Structure: Trie
Rooted tree
Each edge has a letter assigned
Each node corresponds to a string obtained by traversing the path
from the root
Some nodes correspond to words

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 15 / 30

The Solution Implementation Details

Basic Implementation:

typedef struct node {
int child [26]; // array index, -1 if none
int word; // array index, -1 if none

};

node trie [MAXNODES];

int next (int curnode, int letter)
{

return trie[curnode].child[letter];
}

We need 108 bytes for each node.

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 16 / 30

The Solution Implementation Details

Rescoring after changing a cell (x , y):
Move in one of eight directions
Starting from each visited cell, move in opposite direction and traverse
a trie, looking for words containing cell (x , y)

The above procedure should be repeated twice:
To decrease score for the old letter
To increase score for the new letter

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 17 / 30

The Solution Implementation Details

*

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 18 / 30

The Solution Implementation Details

Optimization: For the subproblems, store only words containing specific
letter

The size of the trie is reduced

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 19 / 30

The Solution Implementation Details

Optimization: Add reversed words to the trie
Now we have to look only in four directions instead of eight
Extra care should be taken for palindromes

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 20 / 30

The Solution Implementation Details

*

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 21 / 30

The Solution Implementation Details

Optimization: Add reversed prefixes to the trie
Additionally, for each node we store the number of a “dual” node
corresponding to the reversed string
Now, all substrings and all reversed substrings of the given words are
in the trie
Now we can stop moving in a direction when the reversed prefix is not
in the trie

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 22 / 30

The Solution Implementation Details

*

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 23 / 30

The Solution Implementation Details

Optimization: Build the trie using breadth-first search
First goes the root, then all nodes corresponding to single-letter
strings, etc.
Siblings (children of a particular node in the trie) are adjacent and
ordered lexicographically
Now, instead of storing 26 indices, we can store one index pointing to
the start of the children block and 26 bits indicating whether a
particular child is present
This greatly reduces the memory consumption and improves caching
On the other hand, we now need ≈ log 26 operations to make a single
transition instead of just one

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 24 / 30

The Solution Implementation Details

An Example:

Suppose the trie stores just the strings “ac”, “aab”, “abc”, “abb” and “cba”.
The table below demonstrates how it is stored.

Index String bits for c, b, a start +a +b +c
0 “” 101 1 1 2
1 “a” 111 3 3 4 5
2 “c” 010 6 6
3 “aa” 010 7 7
4 “ab” 110 8 8 9
5 “ac” 000
6 “cb” 001 10 10
7 “aab” 000
8 “abb” 000
9 “abc” 000

10 “cba” 000

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 25 / 30

The Solution Implementation Details

Final Implementation:

typedef struct node {
int bits, start, dual, word;

};

node trie [MAXNODES];

A node occupies only 16 bytes.

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 26 / 30

The Solution Implementation Details

Final Implementation:

inline int next (int curnode, int letter)
{

letter = 1 << letter;
if (!(trie[curnode].bits & letter))

return -1;
int res;
res = trie[curnode].bits & (letter - 1);
if (!res)

return trie[curnode].start;
res = (res & 0x55555555) + ((res >> 1) & (0x55555555));
res = (res & 0x33333333) + ((res >> 2) & (0x33333333));
res = ((res + (res >> 4)) & 0x0F0F0F0F);
res += (res >> 8) + (res >> 16) + (res >> 24);
return trie[curnode].start + char (res);

}

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 26 / 30

The Result

Outline

1 The Problem
Al Zimmermann’s Programming Contests
The Words Search Problem
Example Grids

2 The Solution
Utilizing Classic Approaches
What We Can Change
Heuristics
Implementation Details

3 The Result
Benchmarks
Final Standings

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 27 / 30

The Result Benchmarks

Benchmarks:

On an average few minute Simulated Annealing run for All-letters:
Trie nodes: 856 291
Grids visited: 468 770 each second on an Athlon XP 3200+
Average trie transitions for a single letter change: 101.5

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 28 / 30

The Result Final Standings

Final Standings Top Ten:

Ivan Kazmenko 26.9069
Vadim Trofimov 26.8091
Fumitaka Yura 26.1996
Anton Maydell 25.8956
Mark Beyleveld 25.6342
Hanhong Xue 25.0067
Michael van Fondern 24.9398
Tudor-Mihail Pop 24.9023
Guido Schoepp & Klaus Müller 24.7280
Mikael Klasson 24.3040

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 29 / 30

The Result Final Standings

The End

Ivan Kazmenko (SPbSU) Words Search 05.07.2011 30 / 30

	The Problem
	Al Zimmermann's Programming Contests
	The Words Search Problem
	Example Grids

	The Solution
	Utilizing Classic Approaches
	What We Can Change
	Heuristics
	Implementation Details

	The Result
	Benchmarks
	Final Standings

