Задачи этой тренировки можно сдавать только на учебном языке Пример Рг. При проверке количество процессов равно 100. Подробнее здесь: https://github.com/GassaFM/interpr#pr.

Задача А. Сумма

Ограничение по времени: 1000000 тактов 512 мебибайт Ограничение по памяти:

3адана последовательность из n целых чисел. Найдите сумму всех чисел в ней.

Формат входных данных

В первой строке записано целое число n-длина последовательности $(1 \le n \le 10^6)$. В следующей строке записаны n целых чисел a_1, a_2, \ldots, a_n сама последовательность ($-10^{12} \le a_i \le 10^{12}$).

Формат выходных данных

Выведите одно целое число: сумму всех чисел в последовательности.

Пример

- 1		
	TECT	ответ
	5	30
	6 10 1 7 6	

Задача В. Уникальное число

1000000 тактов Ограничение по времени: Ограничение по памяти: 512 мебибайт

Задана последовательность из n целых чисел. Любое число либо не встречается в ней вовсе, либо встречается ровно два раза — за исключением одного числа x, которое встречается ровно один раз. Найдите это уникальное число x.

Формат входных данных

В первой строке записано целое число n-длина последовательности $(1 \le n \le 10^6)$. В следующей строке записаны n целых чисел a_1, a_2, \ldots, a_n сама последовательность ($1 \le a_i \le 10^9$). Гарантируется, что любое число либо не встречается в последовательности вовсе, либо встречается ровно два раза — за исключением одного числа, которое встречается ровно один раз.

Формат выходных данных

Выведите одно целое число x.

тест	ОТВЕТ
5	7
6 10 10 7 6	

Задача С. Отсутствующее число

Ограничение по времени: 1000000 тактов Ограничение по памяти: 512 мебибайт

3адана последовательность из n целых чисел. Найдите минимальное неотрицательное целое число, которого в ней нет.

Формат входных данных

В первой строке записано целое число n-длина последовательности $(1 \le n \le 70\,000)$. В следующей строке записаны n целых чисел a_1, a_2, \ldots, a_n сама последовательность ($0 \le a_i \le 10^9$).

Формат выходных данных

Выведите одно целое число: минимальное неотрицательное целое число, которое не встречается в последовательности.

Пример

тест	ответ
6	3
0 1 2 4 4 2	

Задача D. Отрезок

Ограничение по времени: 1000000 тактов 512 мебибайт Ограничение по памяти:

 Δ ана последовательность из n целых чисел. Найдите отрезок этой последовательности, сумма чисел на котором максимальна. Найденный отрезок может быть пустым.

Формат входных данных

В первой строке записано целое число n-длина последовательности $(1 \leqslant n \leqslant 10^6)$. В следующей строке записаны n целых чисел a_1, a_2, \dots, a_n сама последовательность ($-10^{12} \leqslant a_i \leqslant 10^{12}$).

Формат выходных данных

Выведите одно целое число: максимальную сумму на отрезке последовательности.

Пример

Ī	TECT	ответ
	5	12
	6 -5 1 10 -6	

Задача Е. Количество инверсий

1000000 тактов Ограничение по времени: 512 мебибайт Ограничение по памяти:

Задана последовательность a_1, a_2, \ldots, a_n , состоящая из n целых чисел. Инверсией называется пара индексов (i,j), для которой i < j, но $a_i > a_j$. Найдите количество инверсий в данной последовательности.

Формат входных данных

В первой строке записано целое число n-длина последовательности $(1 \le n \le 4000)$. В следующей строке записаны n целых чисел a_1, a_2, \ldots, a_n сама последовательность ($1 \leqslant a_i \leqslant 10^9$).

Формат выходных данных

Выведите одно целое число: количество инверсий в заданной последовательности.

Пример

-1	huseb		
	TECT	ответ	
	5	3	
	3 1 3 2 4		

Задача F. Большинство

Ограничение по времени: 1000000 тактов 512 мебибайт Ограничение по памяти:

3адана последовательность из n целых чисел. Найдите число, которому равны более половины элементов последовательности, или выясните, что такого числа нет.

Формат входных данных

В первой строке записано целое число n-длина последовательности $(1\leqslant n\leqslant 200\,000)$. В следующей строке записаны n целых чисел a_1,a_2,\ldots,a_n — Пояснение к примеру сама последовательность ($1 \le a_i \le 10^{18}$).

Формат выходных данных

Если существует число, которому равны более половины элементов последовательности, выведите это число. В противном случае выведите число

Примеры

r		
TECT	ответ	
5	2	
2 1 2 6 2		
4	-1	
1 2 3 3		
	TECT 5 2 1 2 6 2 4	

Задача G. Расстояние в списке

Ограничение по времени: 1000000 тактов Ограничение по памяти: 512 мебибайт

Задан случайный циклический односвязный список из n элементов, пронумерованных целыми числами от 0 до n-1. Найдите в нём расстояние от элемента 0 до элемента 1.

Формат входных данных

В первой строке записано целое число n- количество элементов в списке $(2 \le n \le 200\,000)$. В следующей строке записаны n целых чисел $p_0, p_1, \ldots, p_{n-1}$, задающие список: после элемента i в списке следует элемент p_i $(0 \le p_i < n)$. Γ арантируется, что список, который задают эти числа — это цикл из n элементов, и из таких циклов равновероятно выбран случайный.

Формат выходных данных

Выведите одно целое число: сколько шагов по списку нужно сделать, чтобы из элемента 0 попасть в элемент 1.

Пример

тест	ответ
6	5
5 0 3 4 1 2	

В примере путь такой: $0 \to 5 \to 2 \to 3 \to 4 \to 1$.

Задача Н. Два подмножества

Ограничение по времени: 1 000 000 тактов Ограничение по памяти: 512 мебибайт

Задана последовательность из n целых чисел. Мы можем выбрать два непустых непересекающихся подмножества её элементов. Далее сложим элементы каждого множества, найдём произведение этих двух сумм, после чего вычислим остаток от деления полученного числа на $1\,000\,000\,007$. Найдите наибольшее число, которое можно получить таким образом.

Формат входных данных

В первой строке записано целое число n — длина последовательности ($2 \le n \le 12$). В следующей строке записаны n целых чисел a_1, a_2, \ldots, a_n — сама последовательность ($1 \le a_i \le 10^9$).

Формат выходных данных

Выведите наибольшее число, которое можно получить по условию.

Пример

	rr		
	TECT		
ĺ	6		
	1 10 100 1000 10000 100000		
	OTBET		
	100000000		

Пояснение к примеру

В примере одно из подмножеств может состоять из числа $10\,000$, а другое — из числа $100\,000$. Поскольку результат — это остаток от деления на $1\,000\,000\,007$, такие два подмножества дают наибольший возможный результат.

Задача I. Количество путей

Ограничение по времени: 1 000 000 тактов Ограничение по памяти: 512 мебибайт

Рассмотрим ленту из клеток. В каждой клетке написано число 1, 2 или 3. Робот прыгает по ленте, начиная из первой клетки и заканчивая в последней. Если робот стоит на клетке с числом x, то он может прыгнуть вперёд на любое положительное число клеток не больше x.

Сколько различных путей из первой клетки в последнюю существует для робота? Найдите остаток от деления количества путей на $1\,000\,000\,007$.

Формат входных данных

В первой строке записано целое число n — длина ленты ($1\leqslant n\leqslant 150\,000$). В следующей строке записаны n целых чисел a_1,a_2,\ldots,a_n — числа в клетках ($1\leqslant a_i\leqslant 3$).

Формат выходных данных

Выведите остаток от деления количества путей для робота на 1000000007.

Пример

тест	ответ
5	3
1 2 3 2 1	

Пояснение к примеру

Пронумеруем клетки начиная с единицы.

У робота есть следующие пути:

 $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$,

 $1 \rightarrow 2 \rightarrow 3 \rightarrow 5$,

 $1 \rightarrow 2 \rightarrow 4 \rightarrow 5$.

Задача Ј. Выпуклая оболочка сверху

Ограничение по времени: 1 000 000 тактов Ограничение по памяти: 512 мебибайт

Задана последовательность y_1, y_2, \dots, y_n из n целых чисел. Каждое её число выбрано случайно, равновероятно из целых чисел от 1 до 10^9 и независимо от других.

Рассмотрим множество точек (i,y_i) на плоскости. Точка принадлежит верхней выпуклой оболочке этого множества, если существует прямая, которая проходит через эту точку и при этом строго выше всех остальных точек множества.

Найдите все точки верхней выпуклой оболочки заданного множества.

Формат входных данных

В первой строке записано целое число n—длина последовательности ($1\leqslant n\leqslant 200\,000$). В следующей строке записаны n целых чисел y_1,y_2,\ldots,y_n —сама последовательность ($1\leqslant y_i\leqslant 10^9$). Гарантируется, что каждое число выбрано случайно, равновероятно из целых чисел от 1 до 10^9 и независимо от других.

Формат выходных данных

В первой строке выведите целое число k — количество точек, лежащих на верхней выпуклой оболочке множества точек (i,y_i) . В следующих k строках выведите сами эти точки — по одной на строке, в порядке возрастания абсциссы.

Пример

6 738019188 156680847 182508705
738019188 156680847 182508705
750015100 150000047 102500705
645867035 421237740 324760886
OTBET
3
1 738019188
4 645867035
6 324760886

Замечание

В настоящем примере числа y_i даны на одной строке. В тексте условия используются две строки лишь потому, что на одну числа не поместились.

Задача К. Тише едешь – дальше будешь

Ограничение по времени: 1 000 000 тактов Ограничение по памяти: 512 мебибайт

По прямой движутся точки с номерами $1,2,\ldots,n$. Точка с номером i изначально имеет координату i и движется слева направо со скоростью v_i .

Как только две или больше точек сталкиваются, остаётся самая медленная из них, а все более быстрые исчезают. Сколько точек останется на прямой после всех столкновений?

Формат входных данных

В первой строке записано целое число n — количество точек ($1 \le n \le 10^6$). В следующей строке записаны n целых чисел v_1, v_2, \ldots, v_n — скорости точек ($1 \le v_i \le 10^{18}$).

Формат выходных данных

Выведите одно целое число: сколько точек останется на прямой после всех столкновений.

Пример

TECT	ответ
5	3
1 10 3 7 6	

Задача L. Соседи

Ограничение по времени: 1 000 000 тактов Ограничение по памяти: 512 мебибайт

На прямой отмечены n целых точек с координатами x_1, x_2, \dots, x_n , заданными слева направо.

Добавим на прямую ещё n целых точек так, чтобы максимальное из расстояний между соседними точками оказалось как можно меньше. Чему равно это расстояние?

Формат входных данных

В первой строке записано целое число n – количество точек ($2 \le n \le 10\,000$). В следующей строке записаны n целых чисел x_1, x_2, \ldots, x_n – координаты точек ($1 \le x_i \le 10^{18}$, $x_i < x_{i+1}$).

Формат выходных данных

Выведите одно целое число: насколько малым может быть максимальное из расстояний между соседями после добавления ещё n целых точек.

Пример

тест	ответ	пояснение
3	3	1 3 5 8 10 12
1 5 12		2 2 3 2 2