Математические основы алгоритмов, первый курс, 2022–2023 Алгебра и теория чисел, четверг, 6 октября 2022 года, МКН СПбГУ

Задача А. Два числа

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Даны два целых числа A и B ($1\leqslant A,B\leqslant 100$). Найдите два таких целых числа X и Y, что выполнено равенство AX+BY=1.

Формат входных данных

Во первой строке записаны два числа A и B_{i} разделённые пробелом.

Формат выходных данных

В первой строке выведите два числа X и Y, разделённые пробелом. Требуется, чтобы выполнялись неравенства $|X|\leqslant 10\,000$ и $|Y|\leqslant 10\,000$. Если правильных ответов несколько, разрешается вывести любой из них. Если же таких чисел не существует, выведите вместо них два нуля.

Примеры

стандартный ввод	стандартный вывод
2 3	2 -1
4 6	0 0
100 51	-5075 9951

Задача В. Целые точки

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Точку на координатной плоскости будем называть целой, если обе её координаты — целые числа. К примеру, точки (0,0) и (-4,7) — целые, а точки (-1,0.5) и $(\frac{1}{2},\sqrt{2})$ — нет.

Сколько целых точек содержит заданный отрезок на плоскости?

Формат входных данных

В первой строке заданы два числа x_1 и y_1 — координаты одного конца отрезка. Во второй строке заданы два числа x_2 и y_2 — координаты другого конца отрезка. Числа в каждой строке разделены пробелами. Все заданные координаты — целые числа, не превосходящие по модулю $1\,000\,000\,000$. Гарантируется, что заданные две точки не совпадают.

Формат выходных данных

Выведите количество целых точек на заданном отрезке. Обратите внимание, что концы отрезка тоже учитываются.

Примеры

-r r	
стандартный ввод	стандартный вывод
2 1	3
4 1	
0 0	2
5 7	

Пояснения к примерам

В первом примере целые точки -(2,1), (3,1) и (4,1).

Во втором примере целые точки — только концы отрезка (0,0) и (5,7).

Задача С. Волшебные ночи

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Вокруг далёкой планеты Этан вращается три луны: Клементина, Лея и Матильда. Каждую k-ю ночь наступает полнолуние Клементины, каждую l-ю ночь — полнолуние Леи, а каждую m-ю ночь — полнолуние Матильды. В году на этой планете n ночей, а Новый Год наступает днём.

Ночь на планете Этан считается волшебной, если в эту ночь наступает полнолуние хотя бы у одной из лун. Известно, что в последнюю ночь прошлого года полнолуние наступило одновременно у всех трёх лун Этана. Сколько волшебных ночей в текущем году?

Формат входных данных

В первой строке заданы четыре целых числа k, l, m и n ($1 \le k, l, m, n \le 10^9$). Числа разделены пробелами.

Формат выходных данных

В первой строке выведите одно целое число — количество волшебных ночей в текущем году.

Примеры

стандартный ввод	стандартный вывод
3 4 5 10	7
5 5 5 10	2
30 29 31 360	35
2 4 6 5	2

Пояснения к примерам

В первом примере волшебными считаются 3-я, 4-я, 5-я, 6-я, 8-я, 9-я и 10-я ночи.

Во втором примере волшебных ночей только две — 5-я и 10-я ночи.

В третьем примере волшебными оказываются 12 ночей, когда полнолуние наступает у Клементины, 12 ночей, когда полнолуние наступает у Леи, и 11 ночей, когда полнолуние наступает у Матильды.

В четвёртом примере во вторую ночь наступает полнолуние Клементины, а в четвёртую — Клементины и Леи. Поскольку в году всего пять ночей, следующее полнолуние Матильды случится только в следующем году.

Задача D. Делители 0

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

По данному числу N определите количество его различных положительных делителей.

Формат входных данных

В первой строке задано единственное целое число N ($1 \le N \le 10^{15}$).

Формат выходных данных

Выведите единственное число k — количество различных положительных делителей числа N.

Примеры

стандартный ввод	стандартный вывод
1	1
2	2
6	4
29	2
48	10

В последнем примере число 48 имеет десять делителей — это числа $1,\ 2,\ 3,\ 4,\ 6,\ 8,\ 12,\ 16,\ 24$ и 48.

Задача Е. Делители 1

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Натуральное число a называется genumenem натурального числа b, если $\frac{b}{a}$ — также натуральное число. Например, 1, 2, 3 и 6 — делители числа 6, а 4, 5 и 7 не являются его делителями.

В этой задаче требуется определить, каково максимальное количество различных делителей, которое может иметь натуральное число от 1 до N, включительно.

Формат входных данных

В первой строке задано число N ($1 \le N \le 10^9$).

Формат выходных данных

Выведите одно число — какое максимальное количество делителей может иметь натуральное число от 1 до N, включительно.

Примеры

стандартный ввод	стандартный вывод
2	2
5	3
7	4
18	6

Пояснения к примерам

Среди чисел от 1 до 2 больше всего делителей — 2 — у двойки.

Из чисел 1, 2, 3, 4, 5 максимальным числом делитетей — тремя — обладает четвёрка; нужно вывести 3 — количество её делителей.

У шестёрки 4 делителя, а у семёрки — два; поэтому при N=7 ответ возрастает до четырёх.

Среди чисел от 1 до 18 два числа имеют по шесть делителей — это числа 12 и 18. Необходимо вывести 6, так как чисел с семью и более делителями среди первых 18-ти натуральных чисел нет.

Задача F. Делители 2

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Натуральное число a называется genumenem натурального числа b, если $\frac{b}{a}$ — также натуральное число. Например, 1, 2, 3 и 6 — делители числа 6, а 4, 5 и 7 не являются его делителями.

В этой задаче требуется определить, каково максимальное количество различных делителей, которое может иметь натуральное число от 1 до N, включительно, и найти минимальное из чисел на этом интервале, имеющее ровно столько делителей.

Формат входных данных

В первой строке задано число N ($1 \le N \le 10^{18}$).

Формат выходных данных

Выведите два целых числа через пробел — сколько делителей может иметь натуральное число от 1 до N, включительно, а также само минимальное натуральное число, имеющее столько делителей.

٦,	P	
	стандартный ввод	стандартный вывод
	2	2 2
	5	3 4
	7	4 6
	18	6 12

Задача G. Обратный элемент

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Дано целое число n>0. Рассмотрим множество Z_n , элементами которого являются целые числа 0, 1, 2, ..., n-1. Элемент q называется обратным к элементу p, если $(p\cdot q) \bmod n=1$.

Найдите обратный элемент q по заданным числам n и p.

Формат входных данных

В первой строке заданы два целых числа n и p через пробел ($1 \leqslant n \leqslant 10^9$, $0 \leqslant p < n$).

Формат выходных данных

Если у числа p нет в множестве Z_n обратного элемента, выведите -1. В противном случае выведите q.

Примеры

стандартный ввод	стандартный вывод
3 2	2
5 2	3
8 4	-1
17 0	-1

Задача Н. Первообразный корень

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Mультипликативный порядок числа q по модулю m — это минимальное целое положительное число k, для которого $q^k \bmod m = 1$.

Число q называется nepвooбразным корнем по простому модулю <math>p, если мультипликативный порядок q равен p-1.

Дано простое число p и набор чисел q_1, q_2, \ldots, q_n . Для каждого q_i выясните, является ли оно первообразным корнем по модулю p.

Формат входных данных

В первой строке заданы через пробел два целых числа n и p — количество чисел и модуль ($1 \le n \le 100$, $2 \le p \le 10^9$, число p является простым). Следующие n строк содержат по одному числу q_i каждая ($0 < q_i < p$).

Формат выходных данных

Выведите n строк; в i-й строке выведите «YES», если q_i является первообразным корнем по модулю p, и «NO» в противном случае.

стандартный ввод	стандартный вывод
1 3	YES
2	
2 7	NO
2	YES
3	

Математические основы алгоритмов, первый курс, 2022–2023 Алгебра и теория чисел, четверг, 6 октября 2022 года, МКН СПбГУ

Задача І. Дискретное логарифмирование лайт

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Даны натуральные числа a, b и n. Требуется найти guckpemhuй логарифм b по основанию a по модулю n, то есть такое число x ($0 \le x < n$), что $a^x \equiv b \pmod{n}$.

Формат входных данных

В первой строке заданы через пробел три целых числа a, b и n ($2 \le n \le 10^9$, число n простое, 0 < a, b < n).

Формат выходных данных

В первой строке выведите -1, если дискретного логарифма не существует. Иначе следует вывести его значение.

Если ответ неоднозначен, разрешается выводить любой.

Пример

	стандартный ввод	стандартный вывод
3	5 7	5

Задача Ј. Дискретное логарифмирование

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Даны натуральные числа a, b и n. Требуется найти guckpemhuŭ логарифм b по основанию a по модулю n, то есть такое число x ($0 \le x < n$), что $a^x \equiv b \pmod{n}$.

Формат входных данных

В первой строке заданы через пробел три целых числа a, b и n $(1\leqslant a,b,n\leqslant 10^{12}).$

Формат выходных данных

В первой строке выведите -1, если дискретного логарифма не существует. Иначе следует вывести его значение.

Если ответ неоднозначен, разрешается выводить любой.

стандартный ввод	стандартный вывод
2 4 6	2

Задача К. Проверка на простоту 1

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Натуральное число называется *простым*, если оно делится нацело только на себя и на 1. Единица простым числом не считается.

 Δ ано число p. Определите, простое ли оно.

Формат входных данных

В первой строке задано целое число p ($2 \le p \le 100$).

Формат выходных данных

В первой строке выведите «YES», если число простое, и «NO» в противном случае.

Примеры

стандартный ввод	стандартный вывод
3	YES
6	NO

Задача L. Проверка на простоту 2

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Натуральное число называется npocmыm, если оно делится нацело только на себя и на 1. Единица простым числом не считается.

 Δ ано число p. Определите, простое ли оно.

Формат входных данных

В первой строке задано целое число p ($1 \le p \le 10^9$).

Формат выходных данных

В первой строке выведите «YES», если число простое, и «NO» в противном случае.

Примеры

стандартный ввод	стандартный вывод
3	YES
6	NO

Задача М. Проверка на простоту 3

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Натуральное число называется *простым*, если оно делится нацело только на себя и на 1. Единица простым числом не считается.

Дано число р. Определите, простое ли оно.

Формат входных данных

В первой строке задано целое число p (1 $\leq p \leq 10^{18}$).

Формат выходных данных

В первой строке выведите «YES», если число простое, и «NO» в противном случае.

стандартный ввод	стандартный вывод
3	YES
6	NO

Задача N. Тест Миллера-Рабина

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Существует множество способов проверки числа на простоту. Например, если проверяемое число N достаточно мало, то можно просто поделить N на все простые числа, не превосходящие \sqrt{N} . Если N делится нацело хотя бы на одно из них — значит, оно составное, в противном же случае оно является простым.

Однако, когда число N велико, такой метод может потребовать от проверяющего слишком много времени — ведь трудоёмкость растёт экспоненциально от длины числа N. В настоящее время известно несколько способов определить простоту числа точно, но все они работают довольно долго.

Поэтому чаще применяют способы, определяющие простоту числа с некоторой вероятностью. Один из наиболее быстрых и вместе с тем довольно надёжных способов известен как тест Миллера-Рабина. Ознакомимся с ним подробнее.

Сначала проверим, что N нечётно и больше, чем 1 (в противном случае проверка тривиальна). Представим N-1 как $2^s \cdot d$; заметим, что $s \geqslant 1$.

Теперь для нескольких различных $a\in [1,N-1]$ произведём следующую процедуру. Рассмотрим числа $k_r=a^{2^{T-d}}$ для $r=0,1,\ldots,s-1$. Если $k_0 \bmod N \neq 1$ и ни одно из k_r не совпадает с -1 по модулю N (другими словами, $k_r \bmod N \neq N-1$), число N- составное. В противном случае мы повторяем эту процедуру для следующего a. Чем больше чисел a было проверено, тем больше вероятность того, что число N- простое. Обычно в качестве a подставляют первые несколько простых чисел a a a0, a2, a3, a4, a7, a8, a9, a9,

Мы не будем сейчас останавливаться на том, почему тест Миллера-Рабина работает. Наша задача заключается в другом — по числу N определить, каково же наименьшее простое число a, для которого описанная выше процедура приведёт к установлению того, что N — составное (разумеется, если это так). Число a не окажется слишком большим — известно, что наименьшее нечётное составное число N такое, что для него не срабатывают проверки с a=2,3,5,7,11,13,17,19, равно $341\,550\,071\,728\,321$.

Формат входных данных

В первой строке записано число N ($1 \le N \le 10^{14}$).

Формат выходных данных

Если N чётно или равно единице, и тест Миллера-Рабина неприменим, выведите -1. Если число N нечётное и простое, выведите 0. Иначе выведите наименьшее такое простое число a, что при его проверке по приведённому выше алгоритму выяснится, что N — составное.

стандартный ввод	стандартный вывод
2	-1
15	2
4	-1
821	0
2047	3

Задача О. Простые числа

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Простым, как известно, называется натуральное число, которое делится нацело только на себя и на единицу. Число, делящееся на другое натуральное число, меньшее его, называется составным. Единица не считается ни простым, ни составным числом. Так, есть 25 простых чисел, не превосходящих 100- это числа 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

В этой задаче мы попробуем выяснить, сколько простых чисел расположено на отрезке [A,B], где A и B — целые и $A\leqslant B$. Математики интересовались подобными вопросами уже давно. Ещё в середине XIX века француз Джозеф Луи Франсуа Бертран выдвинул гипотезу о том, что для любого n>1 между n и 2n есть по крайней мере одно простое число. Эта гипотеза была впоследствии доказана Пафнутием Львовичем Чебышёвым и получила название теоремы Чебышёва. Другая теорема, связывающая имена этих двух математиков, говорит о том, что количество простых чисел от 1 до n ведёт себя примерно как $\frac{n}{\ln n}$.

Возможности современных вычислительных машин позволяют посчитать количество простых чисел от A до B точно, если A и B достаточно невелики. В этом и состоит предлагаемая задача.

Формат входных данных

В первой строке записаны два числа — A и B ($1 \le A \le B \le 50\,000\,000$).

Формат выходных данных

Выведите одно число — количество простых чисел на отрезке [A, B].

Примеры

стандартный ввод	стандартный вывод
1 2	1
2 3	2
1 100	25
98 98	0
97 97	1

Задача Р. Фи

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

В этот раз ваша задача очень простая. Всего лишь сосчитайте сумму значений функции Эйлера от a до b включительно, то есть

$$\sum_{i=a}^{b} \varphi(i).$$

Здесь функция Эйлера $\varphi(n)$ — это количество целых чисел от 1 до n включительно, взаимно простых с n.

Формат входных данных

В первой строке заданы два целых числа a и b ($1 \leqslant a \leqslant b \leqslant 4 \cdot 10^{12}$, $b-a \leqslant 2 \cdot 10^6$).

Формат выходных данных

Выведите значение суммы.

Пример

стандартный ввод	стандартный вывод
2 4	5

Пояснение к примеру

В примере $\varphi(2) + \varphi(3) + \varphi(4) = 1 + 2 + 2 = 5$.

Задача Q. Произведение матриц

Имя входного файла: *стандартный ввод*Имя выходного файла: *стандартный вывод*

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Произведением матриц A и B размера $p \times q$ и $q \times r$, соответственно, называется матрица C размера $p \times r$, элементы которой вычисляются по формуле

$$C_{i,j} = \sum_{k=1}^{q} A_{i,k} \cdot B_{k,j}.$$

По данным матрицам A и B найдите их произведение.

Формат входных данных

В первой строке заданы через пробел три целых числа p, q и r ($1\leqslant p,q,r\leqslant 100$). В следующих p строках записана матрица A; каждая из этих строк содержит q целых чисел, разделённых пробелами. Наконец, в последних q строках записана матрица B; каждая из этих строк содержит r целых чисел, разделённых пробелами. Элементы матриц не превосходят 100 по абсолютной величине.

Формат выходных данных

Выведите матрицу C-p строк, в каждой из которых — r чисел через пробел.

стандартный ввод	стандартный вывод
2 2 2	1 0
1 0	0 1
0 1	
1 0	
0 1	
1 3 1	-14
1 2 3	
-1	
-2	
-3	
3 2 4	1 1 2 1
0 1	2 1 0 0
1 0	1 1 2 1
0 1	
2 1 0 0	
1 1 2 1	

Задача R. Числа Фибоначчи по модулю 1

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Числа Фибоначчи F_0 , F_1 , F_2 , ..., F_n определяются следующим образом: $F_0=0$, $F_1=1$, а для любого n>1 выполнено равенство $F_n=F_{n-1}+F_{n-2}$.

По заданному числу n выведите остаток от деления числа Фибоначчи F_n на m.

Формат входных данных

В первой строке ввода заданы через пробел два целых числа n и m ($0 \le n \le 10^9$, $1 \le m \le 10^9$).

Формат выходных данных

В первой строке выведите одно число: остаток от деления F_n на m.

Пример

стандартный ввод	стандартный вывод
8 12345	21
100 1000000000	261915075

Пояснение к примеру

Первые несколько чисел Фибоначчи таковы: $F_0=0$, $F_1=1$, $F_2=1$, $F_3=2$, $F_4=3$, $F_5=5$, $F_6=8$, $F_7=13$, $F_8=21$.

Число Фибоначчи с номером 100 равно $354\,224\,848\,179\,261\,915\,075$. Остаток от деления этого числа на $1\,000\,000\,000$ — это последние девять цифр его десятичной записи.

Задача S. Числа Фибоначчи по модулю 2

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

Числа Фибоначчи F_0 , F_1 , F_2 , ..., F_n определяются следующим образом: $F_0=0$, $F_1=1$, а для любого n>1 выполнено равенство $F_n=F_{n-1}+F_{n-2}$.

По заданному числу n выведите остаток от деления числа Фибоначчи F_n на m.

Формат входных данных

В первой строке ввода заданы через пробел два целых числа n и m $(0 \le n \le 10^{18}, 1 \le m \le 10^{18}).$

Формат выходных данных

В первой строке выведите одно число: остаток от деления F_n на m.

Пример

стандартный ввод	стандартный вывод
8 12345	21
100 1000000000	261915075

Пояснение к примеру

Первые несколько чисел Фибоначчи таковы: $F_0=0$, $F_1=1$, $F_2=1$, $F_3=2$, $F_4=3$, $F_5=5$, $F_6=8$, $F_7=13$, $F_8=21$.

Число Фибоначчи с номером 100 равно $354\,224\,848\,179\,261\,915\,075$. Остаток от деления этого числа на $1\,000\,000\,000$ — это последние девять цифр его десятичной записи.

Задача Т. Зеркальный лабиринт

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мебибайт

В зеркальном лабиринте живут солнечные зверьки: зайчики, кролики и тушканчики. Пока свет в лабиринте погашен, в лабиринте нет никаких солнечных зверьков. Как только свет включают, каждую секунду происходят превращения. В k-ю секунду с момента включения одновременно происходят следующие преобразования:

- ullet В лабиринте появляется k новых солнечных зайчиков.
- Каждый солнечный зайчик, появившийся на предыдущей секунде, исчезает, превращаясь в a кроликов.
- Каждый солнечный кролик, появившийся на предыдущей секунде, исчезает, разделяясь на несколько частей: одного зайчика, b кроликов и одного тушканчика.
- Каждый солнечный тушканчик, появившийся на предыдущей секунде, исчезает, производя на свет *с* зайчиков и трёх кроликов.

Кроме того, лабиринт вмещает ограниченное количество зверьков каждого типа. Поэтому в конце каждой секунды — то есть после всех превращений, произошедших в течение этой секунды — если количество s зверьков какого-либо из трёх типов больше или равно m, зверьков этого типа остаётся $s \mod m$ (остаток от целочисленного деления s на m).

По заданным числам n, m, a, b и c найдите, сколько зверьков каждого из трёх типов в отдельности окажется в лабиринте после того, как свет будет включён в течение n секунд.

Формат входных данных

В первой строке ввода заданы через пробел пять целых чисел: n, m, a, b и c ($1\leqslant n\leqslant 10^9$, $1\leqslant m\leqslant 10^9$, $0\leqslant a,b,c< m$).

Формат выходных данных

В первой строке выведите три числа: количество солнечных зайчиков, солнечных кроликов и солнечных тушканчиков в лабиринте после того, как свет будет включён в течение n секунд. Разделяйте соседние числа в строке пробелами.

Примеры

стандартный ввод	стандартный вывод
1 10 2 3 4	1 0 0
2 10 2 3 4	2 2 0
3 10 2 3 4	5 0 2
4 10 2 3 4	2 6 0

Пояснения к примерам

В примерах представлены первые четыре секунды преобразований при $a=2,\ b=3,\ c=4$ и m=10.

На первой секунде появляется один солнечный зайчик.

На второй секунде он превращается в двух солнечных кроликов, а также появляются два новых солнечных зайчика.

На третьей секунде зайчики, исчезая, порождают четырёх новых кроликов, а кролики—двух зайчиков, шестерых кроликов и двух тушканчиков. Заметим, что количество солнечных кроликов становится равным $a\cdot 2+b\cdot 2=2\cdot 2+3\cdot 2=10.$ Поэтому в конце третьей секунды их численность падает до $10 \bmod 10=0.$ Кроме того, появляется ещё три новых солнечных зайчика.

На четвёртой секунде появляется четыре новых солнечных зайчика, пять старых зайчиков, исчезая, порождают десять кроликов, а два старых тушканчика — восьмерых зайчиков и шестерых кроликов. Поскольку m=10, из 4+8=12 зайчиков и 10+6=16 кроликов остаётся $12 \bmod 10=2$ зайчика и $16 \bmod 10=6$ кроликов.