
Contest strategies

We have three people, one
computer, five hours and up to
twelve problems. What to do?

Roles

• Coder.

• Mathematician (aka thinker).

• Tester.

Note, that role of one person could change
from time to time.

Note, that a person could carry more than one
role.

Team strategies examples.

• C + M + T. Every person does the thing he does
best. But the coder could be exhausted during
first three or four hours.

• C + C + M. Because testing process is very
important, every team member should be a
bit tester in this case.

• S + S + S. (Three Stars). They can loose to
weaker teams because of lack of teamwork.

The start of the contest

• Usually, all teams do almost the same during the start.
• One person sets up the environment.
• Two other read problems, one from the first, one from the

last.
• If a third person manages with set up before simple

problem is found, he joins the rest and reads problems
from the middle.

• When the environment is set up and simple problem is
found, the most suitable member writes a solution for it.

• Up to the end of first hour every person should know the
statement of every problem except maybe problems, which
are already accepted by the team.

Ideas or how to solve a problem?

• Ideas testing: if you think you have a solution,
give your idea a check on sample cases and
some small test cases.

• Tell your ideas to teammate, he can point you
to wrong parts.

• If you have no idea, discussing with teammate
can speedup the thinking process
dramatically.

Before writing the code

• When planning the code keep in mind, that you will need to
debug it later.

• It’s good to split up your code into small procedures and
functions – they are easy to plan afterwards.

• Before writing, think about all needed data structures and
algorithms, make sure you know, what and how you will
implement.

• Think about all technical details of your code, make sure
you will not face some unexpected implementation
problem during writing the code.

• If you have any formulas (mathematical, geometric or
dynamic), write down all of them on a piece of paper.
Carefully check the indices if any.

Writing the code

• Writing top-down: you write the main
function (calling some procedures maybe),
then needed procedures, then procedures
needed for first procedures and so on.

• Writing bottom-up: you start with small
procedures and then go to top until you reach
the main function.

Testing your code

• Testing is a crucial process: without it you can
hardly accept any problem except maybe “A+B”.

• Test you program on a hand-made tests. They
should include minimal and other corner cases.

• Test your program on the sample test cases.
Sometimes they contain a good testset.

• Sometimes you can have a “beautiful” test – do
not hesitate to use it. These can be some
patterns, for example string “abacaba” etc

Testing your code (continued)

• Maximal tests are important: you can catch TL,
ML, RE using them in most cases.

• To make a maximal test you often need a
generator – you will not spend much time to
do it.

• Make assertions in your program, they can
help you to check if something is wrong.

Stress-testing

• Stress-testing is a technique used to run your
program on a plenty of tests in small time.

• Usually you need the solution you want to
check, a correct solution (it can be slow, or
memory-consuming), a generator and a
verifying program.

How to stress-test?

Consider following .bat – script:
@echo off

:loop

gen >input.txt

if errorlevel 1 goto exit

del output.txt

sol1

if errorlevel 1 goto exit

move output.txt output.ans

sol2 if errorlevel 1 goto exit

fc output.txt output.ans

if errorlevel 1 goto exit

goto loop

:exit

How to stress-test?

Or following .sh – script:
#!/bin/sh

while true; do

./gen >input.txt || break

rm output.txt

./sol1 || break

mv output.{txt,ans}

./sol2 || break

export x=$((x + 1))

echo $x

diff output.{txt,ans} || break

done

How to write a generator?

• Use a random number generator.
• Keep in mind, that standard number generator

produces uniformly distributed numbers in
segment [0..RAND_MAX], where RAND_MAX is
defined as 65536 in most compilers.

• You can initialize generator to produce different
tests by calling srand(time(NULL)).

• But it is bad! Why? Because time() updates once
a second, so you can get at most one test per
second. The solution is to use rdtsc or
GetTickCount().

How to write a generator (continued).

long long Time()

{

#ifdef __GNUC__

long long res;

asm volatile ("rdtsc" : "=A" (res));

return res;

#else

int low, hi;

__asm{

rdtsc

mov low, eax

mov hi, edx

}

return (((long long)hi) << 32LL) | low;

#endif

}

Code reading

• It is very useful to print your program and
check its paper version.

• It is even more useful, if you are telling what is
done in your program to your teammate.

Parallelism

• You have three persons and only one computer, thus you have 15
person-hours and only 5 computer-hours. So you are to spend
computer time wisely.

• The computer should not stand still, at any time there should be
something to do on it: setting up, writing code, debugging or
testing.

• Do not spend much computer time to debugging, use code reading
and paper instead.

• When someone is coding, two others can invent a solution for other
problem, or find a bug in another solution.

• But for hard problems, do not leave coding for just one person – he
could make lots of mistakes there, let one another watch him and
third person to work on another problem (inventing solution or
tests, reading code and so on).

Parallelism

• For very hard problems, work in three for
some steps of solving (e.g. inventing solution
or testing).

• To save some computer time, write parts of
the code on paper (while other person is
working on computer).

• If you are stuck in something (technical detail,
debugging or testing), ask your teammates for
help.

Some unexpected bugs

Do not divide by zero

var a, b : integer;

begin

read (a, b);

writeln (a div b);

end.

Which values of a and b lead to “Division by
zero” error?

Do not divide by zero

1. Only b = 0

2. b = 0 and one more value of b

3. b = 0 and one more pair (a, b)

4. None of the above

Do not divide by zero

• Correct answer: b = 0 and
(a = -2147483648, b = -1)

Powers of two

#include <cstdio>

#include <cassert>

int main () {

int s = 0, t;

scanf ("%d", &t);

assert (! (t & (t - 1)));

while (t) {

t >>= 1;

s += t;

}

printf ("%d\n", s);

return 0;

}

Powers of two

Will this program hang?

1. Always will hang

2. Will hang only for one value of t

3. Always will terminate

4. None of the above

Powers of two

• Correct answer: will hang for t = -2^31
(-2147483648)

• In java you can cope with it using logical shift
(>>>), in C use unsigned types.

Type cast in java

Program 1:
import java.util.*;

public class t1 {

public static void main (String args [])
throws Exception {

Scanner in = new Scanner (System.in);

int a = in.nextInt ();

long b = in.nextLong ();

a = a + b;

System.out.println (a);

}

}

Type cast in java

Program 2:
import java.util.*;

public class t2 {

public static void main (String args [])
throws Exception {

Scanner in = new Scanner (System.in);

int a = in.nextInt ();

long b = in.nextLong ();

a += b;

System.out.println (a);

}

}

Type cast in java

Do these programs compile?

1. Both compile

2. Both don’t compile

3. Only first compiles

4. Only second compiles

Type cast in java

Correct answer:

There is strict type cast in java, so first
program does not compile (you can not put
long into int). But second compiles!

Using of functions

#include <cstdio>

#include <cassert>

int nextInt () {

int tmp;

assert (scanf ("%d", &tmp) == 1);

return tmp;

}

void display (int a, int b) {

printf ("%d %d\n", a, b);

}

int main () {

display (nextInt (), nextInt ());

return 0;

}

Using of functions

What will it output having “2 3” in input?

1. 2 2

2. 3 2

3. 2 3

4. Result is undefined…

Using of functions

Correct answer: result is undefined.

Order of calculating of parameters is not fixed
in C/C++.

