Contest strategies

We have three people, one
computer, five hours and up to
twelve problems. What to do?

Roles

* Coder.
 Mathematician (aka thinker).
* Tester.

Note, that role of one person could change
from time to time.

Note, that a person could carry more than one
role.

Team strategies examples.

e C+M+T. Every person does the thing he does
best. But the coder could be exhausted during
first three or four hours.

* C+ C+ M. Because testing process is very
important, every team member should be a
bit tester in this case.

e S+S+S. (Three Stars). They can loose to
weaker teams because of lack of teamwork.

The start of the contest

Usually, all teams do almost the same during the start.
One person sets up the environment.

Two other read problems, one from the first, one from the
last.

If a third person manages with set up before simple
problem is found, he joins the rest and reads problems
from the middle.

When the environment is set up and simple problemis
found, the most suitable member writes a solution for it.

Up to the end of first hour every person should know the
statement of every problem except maybe problems, which
are already accepted by the team.

ldeas or how to solve a problem?

* |deas testing: if you think you have a solution,
give your idea a check on sample cases and
some small test cases.

* Tell your ideas to teammate, he can point you
to wrong parts.

* |f you have no idea, discussing with teammate
can speedup the thinking process
dramatically.

Before writing the code

When planning the code keep in mind, that you will need to
debug it later.

It’s good to split up your code into small procedures and
functions — they are easy to plan afterwards.

Before writing, think about all needed data structures and
algorithms, make sure you know, what and how you will
implement.

Think about all technical details of your code, make sure
you will not face some unexpected implementation
problem during writing the code.

If you have any formulas (mathematical, geometric or
dynamic), write down all of them on a piece of paper.
Carefully check the indices if any.

Writing the code

* Writing top-down: you write the main
function (calling some procedures maybe),
then needed procedures, then procedures
needed for first procedures and so on.

e Writing bottom-up: you start with small
procedures and then go to top until you reach
the main function.

Testing your code

Testing is a crucial process: without it you can
hardly accept any problem except maybe “A+B”.

Test you program on a hand-made tests. They
should include minimal and other corner cases.

Test your program on the sample test cases.
Sometimes they contain a good testset.

Sometimes you can have a “beautiful” test — do
not hesitate to use it. These can be some
patterns, for example string “abacaba” etc

Testing your code (continued)

 Maximal tests are important: you can catch TL,
ML, RE using them in most cases.

* To make a maximal test you often need a

generator — you will not spend much time to
do it.

* Make assertions in your program, they can
help you to check if something is wrong.

Stress-testing

e Stress-testing is a technique used to run your
program on a plenty of tests in small time.

* Usually you need the solution you want to
check, a correct solution (it can be slow, or
memory-consuming), a generator and a
verifying program.

How to stress-test?

Consider following .bat — script:

@echo off

:loop
gen >input. txt
if errorlevel 1 goto exit
del output. txt
soll
if errorlevel 1 goto exit
move output.txt output.ans
sol2 if errorlevel 1 goto exit
fc output.txt output.ans
if errorlevel 1 goto exit
goto loop

rexit

How to stress-test?

Or following .sh — script:
#'!'/bin/sh
while true; do
./gen >input.txt || break
rm output. txt
./soll || break
mv output. {txt,ans}
./sol2 || break
export x=$((x + 1))
echo S$x
diff output.{txt,ans} || break
done

How to write a generator?

Use a random number generator.

Keep in mind, that standard number generator
produces uniformly distributed numbers in
segment [0..RAND_MAX], where RAND_MAX is

defined as 65536 in most compilers.

You can initialize generator to produce different
tests by calling srand(time(NULL)).

But it is bad! Why? Because time() updates once
a second, so you can get at most one test per
second. The solution is to use rdtsc or
GetTickCount().

How to write a generator (continued).

long long Time ()
{
#ifdef _ GNUC_
long long res;
asm volatile ("rdtsc" : "=A" (res));
return res;
#else
int low, hi;
___asm{
rdtsc
mov low, eax
mov hi, edx
}
return (((long long)hi) << 32LL) | low;
#endif

Code reading

* |tis very useful to print your program and
check its paper version.

* |tis even more useful, if you are telling what is
done in your program to your teammate.

Parallelism

You have three persons and only one computer, thus you have 15
person-hours and only 5 computer-hours. So you are to spend
computer time wisely.

The computer should not stand still, at any time there should be
something to do on it: setting up, writing code, debugging or
testing.

Do not spend much computer time to debugging, use code reading
and paper instead.

When someone is coding, two others can invent a solution for other
problem, or find a bug in another solution.

But for hard problems, do not leave coding for just one person — he
could make lots of mistakes there, let one another watch him and
third person to work on another problem (inventing solution or
tests, reading code and so on).

Parallelism

* For very hard problems, work in three for
some steps of solving (e.g. inventing solution
or testing).

* To save some computer time, write parts of
the code on paper (while other person is
working on computer).

 |f you are stuck in something (technical detail,
debugging or testing), ask your teammates for
help.

Some unexpected bugs

Do not divide by zero

var a, b : 1nteger;
begin
read (a, b);
writeln (a div Db);
end.

Which values of a and b lead to “Division by
zero” error?

> W N

Do not divide by zero

. Onlyb=0

. b=0and one more value of b
. b=0and one more pair (a, b)
None of the above

Do not divide by zero

e Correctanswer: b =0and
(a =-2147483648, b = -1)

Powers of two

#include <cstdio>
#include <cassert>

int main () {
int s =0, t;

scanf ("%d", &t);
assert (! (t & (£t - 1)));

while (t) {
t >>=1;
s += t;

}
printf ("%d\n", s);
return 0;

Powers of two

Will this program hang?
1. Always will hang

N

Will hang only for one value of t

W

. Always will terminate

e

None of the above

Powers of two

* Correct answer: will hang for t =-2731
(-2147483648)

* |n java you can cope with it using logical shift
(>>>), in C use unsigned types.

Type cast in java

Program 1:
import java.util.*;

public class tl {

public static void main (String args [])
throws Exception {

Scanner 1n = new Scanner (System.in);
int a = 1n.nextInt ();
long b = 1n.nextLong ()

a =a + b;
System.out.println (a);

Type cast in java

Program 2:
import java.util.*;

public class t2 {

public static void main (String args [])
throws Exception {

Scanner 1n = new Scanner (System.in);
int a = 1n.nextInt ();

long b = 1n.nextLong ()

a += b;

System.out.println (a);

Type cast in java

Do these programs compile?

1. Both compile

= W N

Both don’t compile
Only first compiles
Only second compiles

Type cast in java

Correct answer:

There is strict type cast in java, so first
program does not compile (you can not put
long into int). But second compiles!

Using of functions

#include <cstdio>

#include <cassert>

int nextInt () {

int tmp;
assert (scanf ("%d", &tmp) == 1);
return tmp;

void display (int a, int b) {
printf ("%d %d\n", a, b);

int main () {
display (nextInt (), nextInt ());

return 0;

Using of functions

What will it output having “2 3” in input?
1. 22
32
23

Result is undefined...

= W N

Using of functions

Correct answer: result is undefined.

Order of calculating of parameters is not fixed
in C/C++.

