Серия Е:

Алгоритм Евклида

Условные обозначения: HOД — наибольший общий делитель, HOK — наименьшее общее кратное.

Во всех задачах входные данные задаются с клавиатуры, а результат следует выводить на экран. Все числа по умолчанию целые.

- **Еа.** Даны два числа a и b ($1 \le a, b \le 100$). Выведите их НОД.
- **Eb** . Даны два числа a и b ($1 \le a, b \le 100$). Выведите их НОК.
- **EC** . Даны два числа a и b ($-1\,000\,000\leqslant a,b\leqslant 1\,000\,000$), не равные одновременно нулю. Выведите их НОД.
- **Ed.** Даны два числа a и b ($-1000 \leqslant a, b \leqslant 1000$), не равные одновременно нулю. Выведите их НОК.
- **Ее**. Даны два числа a и b ($1 \le a, b \le 10^9$). Выведите их НОД.
- **Ef.** Даны два числа a и b ($1 \le a, b \le 10^9$). Выведите их НОК, если известно, что оно не превосходит 10^9 .
- **Eg**. Дано число n, а за ним n чисел a_1 , a_2 , ..., a_n ($1 \leqslant a_i \leqslant 10^9$). Выведите их НОД.
- **Eh**. Дано число n, а за ним n чисел a_1 , a_2 , ..., a_n ($1 \le a_i \le 10^9$). Выведите их НОК, если известно, что оно не превосходит 10^9 .
- **Еі.** Даны два числа l и r ($1\leqslant l\leqslant r\leqslant 10^9$). Выведите НОД всех чисел от l до r, включительно.
- Еј. Выведите НОК всех чисел от 1 до 24, включительно.
- **Ek.** Даны два числа a и b ($1 \le a, b \le 10^9$). Пусть d = HOД(a, b). Найдите такие числа x и y, что $a \cdot x + b \cdot y = d$. При этом необходимо, чтобы найденные числа не превосходили по модулю 10^9 .

Сравним два способа быстрого вычисления НОД: алгоритм Евклида и алгоритм Штейна. Обозначим количество делений, происходящих при выполнении алгоритма Евклида для заданных a и b, как e(a,b), а общее количество делений на два и вычитаний, происходящих при выполнении алгоритма Штейна для заданных a и b, как s(a,b).

- **Е1.** Даны два числа l и r ($1\leqslant l\leqslant r\leqslant 10^9$, $r-l\leqslant 1000$). Выведите сумму e(a,b) для всех возможных пар (a,b) таких, что $l\leqslant a\leqslant r$ и $l\leqslant b\leqslant r$.
- **Em**. Даны два числа l и r ($1\leqslant l\leqslant r\leqslant 10^9$, $r-l\leqslant 1000$). Выведите сумму s(a,b) для всех возможных пар (a,b) таких, что $l\leqslant a\leqslant r$ и $l\leqslant b\leqslant r$.
- **En**. Дано целое число n ($1 \le n \le 10^9$). Из всех возможных пар (a,b) таких, что $1 \le a \le n$ и $1 \le b \le n$, выберите ту пару, для которой величина e(a,b) максимальна. Выведите эту пару, а также саму величину e(a,b).
- **EO** . Дано целое число n $(1\leqslant n\leqslant 10^9)$. Из всех возможных пар (a,b) таких, что $1\leqslant a\leqslant n$ и $1\leqslant b\leqslant n$, выберите ту пару, для которой величина s(a,b) максимальна. Выведите эту пару, а также саму величину s(a,b).